Metamath Proof Explorer


Theorem brif12

Description: Move a relation inside and outside the conditional operator. (Contributed by SN, 14-Aug-2024)

Ref Expression
Assertion brif12 ifφABRifφCDif-φARCBRD

Proof

Step Hyp Ref Expression
1 iftrue φifφAB=A
2 iftrue φifφCD=C
3 1 2 breq12d φifφABRifφCDARC
4 iffalse ¬φifφAB=B
5 iffalse ¬φifφCD=D
6 4 5 breq12d ¬φifφABRifφCDBRD
7 3 6 casesifp ifφABRifφCDif-φARCBRD