Metamath Proof Explorer


Theorem brif12

Description: Move a relation inside and outside the conditional operator. (Contributed by SN, 14-Aug-2024)

Ref Expression
Assertion brif12 if φ A B R if φ C D if- φ A R C B R D

Proof

Step Hyp Ref Expression
1 iftrue φ if φ A B = A
2 iftrue φ if φ C D = C
3 1 2 breq12d φ if φ A B R if φ C D A R C
4 iffalse ¬ φ if φ A B = B
5 iffalse ¬ φ if φ C D = D
6 4 5 breq12d ¬ φ if φ A B R if φ C D B R D
7 3 6 casesifp if φ A B R if φ C D if- φ A R C B R D