Metamath Proof Explorer


Theorem brnonrel

Description: A non-relation cannot relate any two classes. (Contributed by RP, 23-Oct-2020)

Ref Expression
Assertion brnonrel XUYV¬XAA-1-1Y

Proof

Step Hyp Ref Expression
1 br0 ¬YX
2 brcnvg YVXUYAA-1-1-1XXAA-1-1Y
3 2 ancoms XUYVYAA-1-1-1XXAA-1-1Y
4 cnvnonrel AA-1-1-1=
5 4 breqi YAA-1-1-1XYX
6 3 5 bitr3di XUYVXAA-1-1YYX
7 1 6 mtbiri XUYV¬XAA-1-1Y