Metamath Proof Explorer


Theorem brtxpsd

Description: Expansion of a common form used in quantifier-free definitions. (Contributed by Scott Fenton, 17-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2014)

Ref Expression
Hypotheses brtxpsd.1 A V
brtxpsd.2 B V
Assertion brtxpsd ¬ A ran V E R V B x x B x R A

Proof

Step Hyp Ref Expression
1 brtxpsd.1 A V
2 brtxpsd.2 B V
3 df-br A ran V E R V B A B ran V E R V
4 opex A B V
5 4 elrn A B ran V E R V x x V E R V A B
6 brsymdif x V E R V A B ¬ x V E A B x R V A B
7 brv x V A
8 vex x V
9 8 1 2 brtxp x V E A B x V A x E B
10 7 9 mpbiran x V E A B x E B
11 2 epeli x E B x B
12 10 11 bitri x V E A B x B
13 brv x V B
14 8 1 2 brtxp x R V A B x R A x V B
15 13 14 mpbiran2 x R V A B x R A
16 12 15 bibi12i x V E A B x R V A B x B x R A
17 6 16 xchbinx x V E R V A B ¬ x B x R A
18 17 exbii x x V E R V A B x ¬ x B x R A
19 5 18 bitri A B ran V E R V x ¬ x B x R A
20 exnal x ¬ x B x R A ¬ x x B x R A
21 3 19 20 3bitrri ¬ x x B x R A A ran V E R V B
22 21 con1bii ¬ A ran V E R V B x x B x R A