Metamath Proof Explorer


Theorem brwitnlem

Description: Lemma for relations which assert the existence of a witness in a two-parameter set. (Contributed by Stefan O'Rear, 25-Jan-2015) (Revised by Mario Carneiro, 23-Aug-2015)

Ref Expression
Hypotheses brwitnlem.r R=O-1V1𝑜
brwitnlem.o OFnX
Assertion brwitnlem ARBAOB

Proof

Step Hyp Ref Expression
1 brwitnlem.r R=O-1V1𝑜
2 brwitnlem.o OFnX
3 fvex OABV
4 dif1o OABV1𝑜OABVOAB
5 3 4 mpbiran OABV1𝑜OAB
6 5 anbi2i ABXOABV1𝑜ABXOAB
7 elpreima OFnXABO-1V1𝑜ABXOABV1𝑜
8 2 7 ax-mp ABO-1V1𝑜ABXOABV1𝑜
9 ndmfv ¬ABdomOOAB=
10 9 necon1ai OABABdomO
11 2 fndmi domO=X
12 10 11 eleqtrdi OABABX
13 12 pm4.71ri OABABXOAB
14 6 8 13 3bitr4i ABO-1V1𝑜OAB
15 1 breqi ARBAO-1V1𝑜B
16 df-br AO-1V1𝑜BABO-1V1𝑜
17 15 16 bitri ARBABO-1V1𝑜
18 df-ov AOB=OAB
19 18 neeq1i AOBOAB
20 14 17 19 3bitr4i ARBAOB