Metamath Proof Explorer


Theorem btwncolinear3

Description: Betweenness implies colinearity. (Contributed by Scott Fenton, 15-Oct-2013) (Revised by Mario Carneiro, 19-Apr-2014)

Ref Expression
Assertion btwncolinear3 NA𝔼NB𝔼NC𝔼NCBtwnABBColinearAC

Proof

Step Hyp Ref Expression
1 btwncolinear1 NA𝔼NB𝔼NC𝔼NCBtwnABAColinearBC
2 colinearperm2 NA𝔼NB𝔼NC𝔼NAColinearBCBColinearAC
3 1 2 sylibd NA𝔼NB𝔼NC𝔼NCBtwnABBColinearAC