Metamath Proof Explorer


Theorem cad1

Description: If one input is true, then the adder carry is true exactly when at least one of the other two inputs is true. (Contributed by Mario Carneiro, 8-Sep-2016) (Proof shortened by Wolf Lammen, 19-Jun-2020)

Ref Expression
Assertion cad1 χcaddφψχφψ

Proof

Step Hyp Ref Expression
1 cadan caddφψχφψφχψχ
2 3anass φψφχψχφψφχψχ
3 1 2 bitri caddφψχφψφχψχ
4 olc χφχ
5 olc χψχ
6 4 5 jca χφχψχ
7 6 biantrud χφψφψφχψχ
8 3 7 bitr4id χcaddφψχφψ