Metamath Proof Explorer


Theorem cad1

Description: If one input is true, then the adder carry is true exactly when at least one of the other two inputs is true. (Contributed by Mario Carneiro, 8-Sep-2016) (Proof shortened by Wolf Lammen, 19-Jun-2020)

Ref Expression
Assertion cad1 χ cadd φ ψ χ φ ψ

Proof

Step Hyp Ref Expression
1 cadan cadd φ ψ χ φ ψ φ χ ψ χ
2 3anass φ ψ φ χ ψ χ φ ψ φ χ ψ χ
3 1 2 bitri cadd φ ψ χ φ ψ φ χ ψ χ
4 olc χ φ χ
5 olc χ ψ χ
6 4 5 jca χ φ χ ψ χ
7 6 biantrud χ φ ψ φ ψ φ χ ψ χ
8 3 7 bitr4id χ cadd φ ψ χ φ ψ