Metamath Proof Explorer


Theorem cadcoma

Description: Commutative law for the adder carry. (Contributed by Mario Carneiro, 4-Sep-2016)

Ref Expression
Assertion cadcoma caddφψχcaddψφχ

Proof

Step Hyp Ref Expression
1 ancom φψψφ
2 xorcom φψψφ
3 2 anbi2i χφψχψφ
4 1 3 orbi12i φψχφψψφχψφ
5 df-cad caddφψχφψχφψ
6 df-cad caddψφχψφχψφ
7 4 5 6 3bitr4i caddφψχcaddψφχ