Metamath Proof Explorer


Theorem cador

Description: The adder carry in disjunctive normal form. (Contributed by Mario Carneiro, 4-Sep-2016) (Proof shortened by Wolf Lammen, 11-Jul-2020)

Ref Expression
Assertion cador caddφψχφψφχψχ

Proof

Step Hyp Ref Expression
1 xor2 φψφψ¬φψ
2 1 rbaib ¬φψφψφψ
3 2 anbi1d ¬φψφψχφψχ
4 ancom φψχχφψ
5 andir φψχφχψχ
6 3 4 5 3bitr3g ¬φψχφψφχψχ
7 6 pm5.74i ¬φψχφψ¬φψφχψχ
8 df-or φψχφψ¬φψχφψ
9 df-or φψφχψχ¬φψφχψχ
10 7 8 9 3bitr4i φψχφψφψφχψχ
11 df-cad caddφψχφψχφψ
12 3orass φψφχψχφψφχψχ
13 10 11 12 3bitr4i caddφψχφψφχψχ