Metamath Proof Explorer


Theorem cantnfdm

Description: The domain of the Cantor normal form function (in later lemmas we will use dom ( A CNF B ) to abbreviate "the set of finitely supported functions from B to A "). (Contributed by Mario Carneiro, 25-May-2015) (Revised by AV, 28-Jun-2019)

Ref Expression
Hypotheses cantnffval.s S=gAB|finSuppg
cantnffval.a φAOn
cantnffval.b φBOn
Assertion cantnfdm φdomACNFB=S

Proof

Step Hyp Ref Expression
1 cantnffval.s S=gAB|finSuppg
2 cantnffval.a φAOn
3 cantnffval.b φBOn
4 1 2 3 cantnffval φACNFB=fSOrdIsoEfsupp/hseqωkV,zVA𝑜hk𝑜fhk+𝑜zdomh
5 4 dmeqd φdomACNFB=domfSOrdIsoEfsupp/hseqωkV,zVA𝑜hk𝑜fhk+𝑜zdomh
6 fvex seqωkV,zVA𝑜hk𝑜fhk+𝑜zdomhV
7 6 csbex OrdIsoEfsupp/hseqωkV,zVA𝑜hk𝑜fhk+𝑜zdomhV
8 7 rgenw fSOrdIsoEfsupp/hseqωkV,zVA𝑜hk𝑜fhk+𝑜zdomhV
9 dmmptg fSOrdIsoEfsupp/hseqωkV,zVA𝑜hk𝑜fhk+𝑜zdomhVdomfSOrdIsoEfsupp/hseqωkV,zVA𝑜hk𝑜fhk+𝑜zdomh=S
10 8 9 ax-mp domfSOrdIsoEfsupp/hseqωkV,zVA𝑜hk𝑜fhk+𝑜zdomh=S
11 5 10 eqtrdi φdomACNFB=S