Metamath Proof Explorer


Theorem cantnff1o

Description: Simplify the isomorphism of cantnf to simple bijection. (Contributed by Mario Carneiro, 30-May-2015)

Ref Expression
Hypotheses cantnff1o.1 S=domACNFB
cantnff1o.2 φAOn
cantnff1o.3 φBOn
Assertion cantnff1o φACNFB:S1-1 ontoA𝑜B

Proof

Step Hyp Ref Expression
1 cantnff1o.1 S=domACNFB
2 cantnff1o.2 φAOn
3 cantnff1o.3 φBOn
4 eqid xy|zBxzyzwBzwxw=yw=xy|zBxzyzwBzwxw=yw
5 1 2 3 4 cantnf φACNFBIsomxy|zBxzyzwBzwxw=yw,ESA𝑜B
6 isof1o ACNFBIsomxy|zBxzyzwBzwxw=yw,ESA𝑜BACNFB:S1-1 ontoA𝑜B
7 5 6 syl φACNFB:S1-1 ontoA𝑜B