Metamath Proof Explorer


Theorem wemapwe

Description: Construct lexicographic order on a function space based on a reverse well-ordering of the indices and a well-ordering of the values. (Contributed by Mario Carneiro, 29-May-2015) (Revised by AV, 3-Jul-2019)

Ref Expression
Hypotheses wemapwe.t T=xy|zAxzSyzwAzRwxw=yw
wemapwe.u U=xBA|finSuppZx
wemapwe.2 φRWeA
wemapwe.3 φSWeB
wemapwe.4 φB
wemapwe.5 F=OrdIsoRA
wemapwe.6 G=OrdIsoSB
wemapwe.7 Z=G
Assertion wemapwe φTWeU

Proof

Step Hyp Ref Expression
1 wemapwe.t T=xy|zAxzSyzwAzRwxw=yw
2 wemapwe.u U=xBA|finSuppZx
3 wemapwe.2 φRWeA
4 wemapwe.3 φSWeB
5 wemapwe.4 φB
6 wemapwe.5 F=OrdIsoRA
7 wemapwe.6 G=OrdIsoSB
8 wemapwe.7 Z=G
9 eqid xdomGdomF|finSuppG-1Zx=xdomGdomF|finSuppG-1Zx
10 eqid G-1Z=G-1Z
11 simprr φBVAVAV
12 3 adantr φBVAVRWeA
13 6 oiiso AVRWeAFIsomE,RdomFA
14 11 12 13 syl2anc φBVAVFIsomE,RdomFA
15 isof1o FIsomE,RdomFAF:domF1-1 ontoA
16 14 15 syl φBVAVF:domF1-1 ontoA
17 simprl φBVAVBV
18 4 adantr φBVAVSWeB
19 7 oiiso BVSWeBGIsomE,SdomGB
20 17 18 19 syl2anc φBVAVGIsomE,SdomGB
21 isof1o GIsomE,SdomGBG:domG1-1 ontoB
22 f1ocnv G:domG1-1 ontoBG-1:B1-1 ontodomG
23 20 21 22 3syl φBVAVG-1:B1-1 ontodomG
24 6 oiexg AVFV
25 24 ad2antll φBVAVFV
26 25 dmexd φBVAVdomFV
27 7 oiexg BVGV
28 27 ad2antrl φBVAVGV
29 28 dmexd φBVAVdomGV
30 20 21 syl φBVAVG:domG1-1 ontoB
31 f1ofo G:domG1-1 ontoBG:domGontoB
32 forn G:domGontoBranG=B
33 30 31 32 3syl φBVAVranG=B
34 5 adantr φBVAVB
35 33 34 eqnetrd φBVAVranG
36 dm0rn0 domG=ranG=
37 36 necon3bii domGranG
38 35 37 sylibr φBVAVdomG
39 7 oicl OrddomG
40 ord0eln0 OrddomGdomGdomG
41 39 40 ax-mp domGdomG
42 38 41 sylibr φBVAVdomG
43 7 oif G:domGB
44 43 ffvelcdmi domGGB
45 42 44 syl φBVAVGB
46 8 45 eqeltrid φBVAVZB
47 2 9 10 16 23 11 17 26 29 46 mapfien φBVAVfUG-1fF:U1-1 ontoxdomGdomF|finSuppG-1Zx
48 eqid xdomGdomF|finSuppx=xdomGdomF|finSuppx
49 7 oion BVdomGOn
50 49 ad2antrl φBVAVdomGOn
51 6 oion AVdomFOn
52 51 ad2antll φBVAVdomFOn
53 48 50 52 cantnfdm φBVAVdomdomGCNFdomF=xdomGdomF|finSuppx
54 8 fveq2i G-1Z=G-1G
55 f1ocnvfv1 G:domG1-1 ontoBdomGG-1G=
56 30 42 55 syl2anc φBVAVG-1G=
57 54 56 eqtrid φBVAVG-1Z=
58 57 breq2d φBVAVfinSuppG-1ZxfinSuppx
59 58 rabbidv φBVAVxdomGdomF|finSuppG-1Zx=xdomGdomF|finSuppx
60 53 59 eqtr4d φBVAVdomdomGCNFdomF=xdomGdomF|finSuppG-1Zx
61 60 f1oeq3d φBVAVfUG-1fF:U1-1 ontodomdomGCNFdomFfUG-1fF:U1-1 ontoxdomGdomF|finSuppG-1Zx
62 47 61 mpbird φBVAVfUG-1fF:U1-1 ontodomdomGCNFdomF
63 eqid domdomGCNFdomF=domdomGCNFdomF
64 eqid ab|cdomFacbcddomFcdad=bd=ab|cdomFacbcddomFcdad=bd
65 63 50 52 64 oemapwe φBVAVab|cdomFacbcddomFcdad=bdWedomdomGCNFdomFdomOrdIsoab|cdomFacbcddomFcdad=bddomdomGCNFdomF=domG𝑜domF
66 65 simpld φBVAVab|cdomFacbcddomFcdad=bdWedomdomGCNFdomF
67 eqid xy|fUG-1fFxab|cdomFacbcddomFcdad=bdfUG-1fFy=xy|fUG-1fFxab|cdomFacbcddomFcdad=bdfUG-1fFy
68 67 f1owe fUG-1fF:U1-1 ontodomdomGCNFdomFab|cdomFacbcddomFcdad=bdWedomdomGCNFdomFxy|fUG-1fFxab|cdomFacbcddomFcdad=bdfUG-1fFyWeU
69 62 66 68 sylc φBVAVxy|fUG-1fFxab|cdomFacbcddomFcdad=bdfUG-1fFyWeU
70 weinxp xy|fUG-1fFxab|cdomFacbcddomFcdad=bdfUG-1fFyWeUxy|fUG-1fFxab|cdomFacbcddomFcdad=bdfUG-1fFyU×UWeU
71 69 70 sylib φBVAVxy|fUG-1fFxab|cdomFacbcddomFcdad=bdfUG-1fFyU×UWeU
72 16 adantr φBVAVxUyUF:domF1-1 ontoA
73 f1ofn F:domF1-1 ontoAFFndomF
74 fveq2 z=Fcxz=xFc
75 fveq2 z=Fcyz=yFc
76 74 75 breq12d z=FcxzSyzxFcSyFc
77 breq1 z=FczRwFcRw
78 77 imbi1d z=FczRwxw=ywFcRwxw=yw
79 78 ralbidv z=FcwAzRwxw=ywwAFcRwxw=yw
80 76 79 anbi12d z=FcxzSyzwAzRwxw=ywxFcSyFcwAFcRwxw=yw
81 80 rexrn FFndomFzranFxzSyzwAzRwxw=ywcdomFxFcSyFcwAFcRwxw=yw
82 72 73 81 3syl φBVAVxUyUzranFxzSyzwAzRwxw=ywcdomFxFcSyFcwAFcRwxw=yw
83 f1ofo F:domF1-1 ontoAF:domFontoA
84 forn F:domFontoAranF=A
85 72 83 84 3syl φBVAVxUyUranF=A
86 85 rexeqdv φBVAVxUyUzranFxzSyzwAzRwxw=ywzAxzSyzwAzRwxw=yw
87 28 adantr φBVAVxUyUGV
88 cnvexg GVG-1V
89 87 88 syl φBVAVxUyUG-1V
90 vex xV
91 25 adantr φBVAVxUyUFV
92 coexg xVFVxFV
93 90 91 92 sylancr φBVAVxUyUxFV
94 coexg G-1VxFVG-1xFV
95 89 93 94 syl2anc φBVAVxUyUG-1xFV
96 vex yV
97 coexg yVFVyFV
98 96 91 97 sylancr φBVAVxUyUyFV
99 coexg G-1VyFVG-1yFV
100 89 98 99 syl2anc φBVAVxUyUG-1yFV
101 fveq1 a=G-1xFac=G-1xFc
102 fveq1 b=G-1yFbc=G-1yFc
103 eleq12 ac=G-1xFcbc=G-1yFcacbcG-1xFcG-1yFc
104 101 102 103 syl2an a=G-1xFb=G-1yFacbcG-1xFcG-1yFc
105 fveq1 a=G-1xFad=G-1xFd
106 fveq1 b=G-1yFbd=G-1yFd
107 105 106 eqeqan12d a=G-1xFb=G-1yFad=bdG-1xFd=G-1yFd
108 107 imbi2d a=G-1xFb=G-1yFcdad=bdcdG-1xFd=G-1yFd
109 108 ralbidv a=G-1xFb=G-1yFddomFcdad=bdddomFcdG-1xFd=G-1yFd
110 104 109 anbi12d a=G-1xFb=G-1yFacbcddomFcdad=bdG-1xFcG-1yFcddomFcdG-1xFd=G-1yFd
111 110 rexbidv a=G-1xFb=G-1yFcdomFacbcddomFcdad=bdcdomFG-1xFcG-1yFcddomFcdG-1xFd=G-1yFd
112 111 64 brabga G-1xFVG-1yFVG-1xFab|cdomFacbcddomFcdad=bdG-1yFcdomFG-1xFcG-1yFcddomFcdG-1xFd=G-1yFd
113 95 100 112 syl2anc φBVAVxUyUG-1xFab|cdomFacbcddomFcdad=bdG-1yFcdomFG-1xFcG-1yFcddomFcdG-1xFd=G-1yFd
114 eqid fUG-1fF=fUG-1fF
115 coeq1 f=xfF=xF
116 115 coeq2d f=xG-1fF=G-1xF
117 simprl φBVAVxUyUxU
118 114 116 117 95 fvmptd3 φBVAVxUyUfUG-1fFx=G-1xF
119 coeq1 f=yfF=yF
120 119 coeq2d f=yG-1fF=G-1yF
121 simprr φBVAVxUyUyU
122 114 120 121 100 fvmptd3 φBVAVxUyUfUG-1fFy=G-1yF
123 118 122 breq12d φBVAVxUyUfUG-1fFxab|cdomFacbcddomFcdad=bdfUG-1fFyG-1xFab|cdomFacbcddomFcdad=bdG-1yF
124 20 ad2antrr φBVAVxUyUcdomFGIsomE,SdomGB
125 isocnv GIsomE,SdomGBG-1IsomS,EBdomG
126 124 125 syl φBVAVxUyUcdomFG-1IsomS,EBdomG
127 2 ssrab3 UBA
128 127 117 sselid φBVAVxUyUxBA
129 elmapi xBAx:AB
130 128 129 syl φBVAVxUyUx:AB
131 6 oif F:domFA
132 131 ffvelcdmi cdomFFcA
133 ffvelcdm x:ABFcAxFcB
134 130 132 133 syl2an φBVAVxUyUcdomFxFcB
135 127 121 sselid φBVAVxUyUyBA
136 elmapi yBAy:AB
137 135 136 syl φBVAVxUyUy:AB
138 ffvelcdm y:ABFcAyFcB
139 137 132 138 syl2an φBVAVxUyUcdomFyFcB
140 isorel G-1IsomS,EBdomGxFcByFcBxFcSyFcG-1xFcEG-1yFc
141 126 134 139 140 syl12anc φBVAVxUyUcdomFxFcSyFcG-1xFcEG-1yFc
142 fvex G-1yFcV
143 142 epeli G-1xFcEG-1yFcG-1xFcG-1yFc
144 141 143 bitrdi φBVAVxUyUcdomFxFcSyFcG-1xFcG-1yFc
145 130 adantr φBVAVxUyUcdomFx:AB
146 fco x:ABF:domFAxF:domFB
147 145 131 146 sylancl φBVAVxUyUcdomFxF:domFB
148 fvco3 xF:domFBcdomFG-1xFc=G-1xFc
149 147 148 sylancom φBVAVxUyUcdomFG-1xFc=G-1xFc
150 simpr φBVAVxUyUcdomFcdomF
151 fvco3 F:domFAcdomFxFc=xFc
152 131 150 151 sylancr φBVAVxUyUcdomFxFc=xFc
153 152 fveq2d φBVAVxUyUcdomFG-1xFc=G-1xFc
154 149 153 eqtrd φBVAVxUyUcdomFG-1xFc=G-1xFc
155 137 adantr φBVAVxUyUcdomFy:AB
156 fco y:ABF:domFAyF:domFB
157 155 131 156 sylancl φBVAVxUyUcdomFyF:domFB
158 fvco3 yF:domFBcdomFG-1yFc=G-1yFc
159 157 158 sylancom φBVAVxUyUcdomFG-1yFc=G-1yFc
160 fvco3 F:domFAcdomFyFc=yFc
161 131 150 160 sylancr φBVAVxUyUcdomFyFc=yFc
162 161 fveq2d φBVAVxUyUcdomFG-1yFc=G-1yFc
163 159 162 eqtrd φBVAVxUyUcdomFG-1yFc=G-1yFc
164 154 163 eleq12d φBVAVxUyUcdomFG-1xFcG-1yFcG-1xFcG-1yFc
165 144 164 bitr4d φBVAVxUyUcdomFxFcSyFcG-1xFcG-1yFc
166 85 raleqdv φBVAVxUyUwranFFcRwxw=ywwAFcRwxw=yw
167 breq2 w=FdFcRwFcRFd
168 fveq2 w=Fdxw=xFd
169 fveq2 w=Fdyw=yFd
170 168 169 eqeq12d w=Fdxw=ywxFd=yFd
171 167 170 imbi12d w=FdFcRwxw=ywFcRFdxFd=yFd
172 171 ralrn FFndomFwranFFcRwxw=ywddomFFcRFdxFd=yFd
173 72 73 172 3syl φBVAVxUyUwranFFcRwxw=ywddomFFcRFdxFd=yFd
174 166 173 bitr3d φBVAVxUyUwAFcRwxw=ywddomFFcRFdxFd=yFd
175 174 adantr φBVAVxUyUcdomFwAFcRwxw=ywddomFFcRFdxFd=yFd
176 epel cEdcd
177 14 ad2antrr φBVAVxUyUcdomFddomFFIsomE,RdomFA
178 isorel FIsomE,RdomFAcdomFddomFcEdFcRFd
179 177 178 sylancom φBVAVxUyUcdomFddomFcEdFcRFd
180 176 179 bitr3id φBVAVxUyUcdomFddomFcdFcRFd
181 147 adantrr φBVAVxUyUcdomFddomFxF:domFB
182 simprr φBVAVxUyUcdomFddomFddomF
183 181 182 fvco3d φBVAVxUyUcdomFddomFG-1xFd=G-1xFd
184 157 adantrr φBVAVxUyUcdomFddomFyF:domFB
185 184 182 fvco3d φBVAVxUyUcdomFddomFG-1yFd=G-1yFd
186 183 185 eqeq12d φBVAVxUyUcdomFddomFG-1xFd=G-1yFdG-1xFd=G-1yFd
187 30 ad2antrr φBVAVxUyUcdomFddomFG:domG1-1 ontoB
188 f1of1 G-1:B1-1 ontodomGG-1:B1-1domG
189 187 22 188 3syl φBVAVxUyUcdomFddomFG-1:B1-1domG
190 181 182 ffvelcdmd φBVAVxUyUcdomFddomFxFdB
191 184 182 ffvelcdmd φBVAVxUyUcdomFddomFyFdB
192 f1fveq G-1:B1-1domGxFdByFdBG-1xFd=G-1yFdxFd=yFd
193 189 190 191 192 syl12anc φBVAVxUyUcdomFddomFG-1xFd=G-1yFdxFd=yFd
194 fvco3 F:domFAddomFxFd=xFd
195 131 182 194 sylancr φBVAVxUyUcdomFddomFxFd=xFd
196 fvco3 F:domFAddomFyFd=yFd
197 131 182 196 sylancr φBVAVxUyUcdomFddomFyFd=yFd
198 195 197 eqeq12d φBVAVxUyUcdomFddomFxFd=yFdxFd=yFd
199 186 193 198 3bitrd φBVAVxUyUcdomFddomFG-1xFd=G-1yFdxFd=yFd
200 180 199 imbi12d φBVAVxUyUcdomFddomFcdG-1xFd=G-1yFdFcRFdxFd=yFd
201 200 anassrs φBVAVxUyUcdomFddomFcdG-1xFd=G-1yFdFcRFdxFd=yFd
202 201 ralbidva φBVAVxUyUcdomFddomFcdG-1xFd=G-1yFdddomFFcRFdxFd=yFd
203 175 202 bitr4d φBVAVxUyUcdomFwAFcRwxw=ywddomFcdG-1xFd=G-1yFd
204 165 203 anbi12d φBVAVxUyUcdomFxFcSyFcwAFcRwxw=ywG-1xFcG-1yFcddomFcdG-1xFd=G-1yFd
205 204 rexbidva φBVAVxUyUcdomFxFcSyFcwAFcRwxw=ywcdomFG-1xFcG-1yFcddomFcdG-1xFd=G-1yFd
206 113 123 205 3bitr4rd φBVAVxUyUcdomFxFcSyFcwAFcRwxw=ywfUG-1fFxab|cdomFacbcddomFcdad=bdfUG-1fFy
207 82 86 206 3bitr3d φBVAVxUyUzAxzSyzwAzRwxw=ywfUG-1fFxab|cdomFacbcddomFcdad=bdfUG-1fFy
208 207 ex φBVAVxUyUzAxzSyzwAzRwxw=ywfUG-1fFxab|cdomFacbcddomFcdad=bdfUG-1fFy
209 208 pm5.32rd φBVAVzAxzSyzwAzRwxw=ywxUyUfUG-1fFxab|cdomFacbcddomFcdad=bdfUG-1fFyxUyU
210 209 opabbidv φBVAVxy|zAxzSyzwAzRwxw=ywxUyU=xy|fUG-1fFxab|cdomFacbcddomFcdad=bdfUG-1fFyxUyU
211 df-xp U×U=xy|xUyU
212 1 211 ineq12i TU×U=xy|zAxzSyzwAzRwxw=ywxy|xUyU
213 inopab xy|zAxzSyzwAzRwxw=ywxy|xUyU=xy|zAxzSyzwAzRwxw=ywxUyU
214 212 213 eqtri TU×U=xy|zAxzSyzwAzRwxw=ywxUyU
215 211 ineq2i xy|fUG-1fFxab|cdomFacbcddomFcdad=bdfUG-1fFyU×U=xy|fUG-1fFxab|cdomFacbcddomFcdad=bdfUG-1fFyxy|xUyU
216 inopab xy|fUG-1fFxab|cdomFacbcddomFcdad=bdfUG-1fFyxy|xUyU=xy|fUG-1fFxab|cdomFacbcddomFcdad=bdfUG-1fFyxUyU
217 215 216 eqtri xy|fUG-1fFxab|cdomFacbcddomFcdad=bdfUG-1fFyU×U=xy|fUG-1fFxab|cdomFacbcddomFcdad=bdfUG-1fFyxUyU
218 210 214 217 3eqtr4g φBVAVTU×U=xy|fUG-1fFxab|cdomFacbcddomFcdad=bdfUG-1fFyU×U
219 weeq1 TU×U=xy|fUG-1fFxab|cdomFacbcddomFcdad=bdfUG-1fFyU×UTU×UWeUxy|fUG-1fFxab|cdomFacbcddomFcdad=bdfUG-1fFyU×UWeU
220 218 219 syl φBVAVTU×UWeUxy|fUG-1fFxab|cdomFacbcddomFcdad=bdfUG-1fFyU×UWeU
221 71 220 mpbird φBVAVTU×UWeU
222 weinxp TWeUTU×UWeU
223 221 222 sylibr φBVAVTWeU
224 223 ex φBVAVTWeU
225 we0 TWe
226 elmapex xBABVAV
227 226 con3i ¬BVAV¬xBA
228 227 pm2.21d ¬BVAVxBA¬finSuppZx
229 228 ralrimiv ¬BVAVxBA¬finSuppZx
230 rabeq0 xBA|finSuppZx=xBA¬finSuppZx
231 229 230 sylibr ¬BVAVxBA|finSuppZx=
232 2 231 eqtrid ¬BVAVU=
233 weeq2 U=TWeUTWe
234 232 233 syl ¬BVAVTWeUTWe
235 225 234 mpbiri ¬BVAVTWeU
236 224 235 pm2.61d1 φTWeU