Metamath Proof Explorer


Theorem f1owe

Description: Well-ordering of isomorphic relations. (Contributed by NM, 4-Mar-1997)

Ref Expression
Hypothesis f1owe.1 R=xy|FxSFy
Assertion f1owe F:A1-1 ontoBSWeBRWeA

Proof

Step Hyp Ref Expression
1 f1owe.1 R=xy|FxSFy
2 fveq2 x=zFx=Fz
3 2 breq1d x=zFxSFyFzSFy
4 fveq2 y=wFy=Fw
5 4 breq2d y=wFzSFyFzSFw
6 3 5 1 brabg zAwAzRwFzSFw
7 6 rgen2 zAwAzRwFzSFw
8 df-isom FIsomR,SABF:A1-1 ontoBzAwAzRwFzSFw
9 isowe FIsomR,SABRWeASWeB
10 8 9 sylbir F:A1-1 ontoBzAwAzRwFzSFwRWeASWeB
11 7 10 mpan2 F:A1-1 ontoBRWeASWeB
12 11 biimprd F:A1-1 ontoBSWeBRWeA