Metamath Proof Explorer


Theorem weniso

Description: A set-like well-ordering has no nontrivial automorphisms. (Contributed by Stefan O'Rear, 16-Nov-2014) (Revised by Mario Carneiro, 25-Jun-2015)

Ref Expression
Assertion weniso R We A R Se A F Isom R , R A A F = I A

Proof

Step Hyp Ref Expression
1 rabn0 a A | ¬ F a = a a A ¬ F a = a
2 rexnal a A ¬ F a = a ¬ a A F a = a
3 1 2 bitri a A | ¬ F a = a ¬ a A F a = a
4 simpl1 R We A R Se A F Isom R , R A A a A | ¬ F a = a R We A
5 simpl2 R We A R Se A F Isom R , R A A a A | ¬ F a = a R Se A
6 ssrab2 a A | ¬ F a = a A
7 6 a1i R We A R Se A F Isom R , R A A a A | ¬ F a = a a A | ¬ F a = a A
8 simpr R We A R Se A F Isom R , R A A a A | ¬ F a = a a A | ¬ F a = a
9 wereu2 R We A R Se A a A | ¬ F a = a A a A | ¬ F a = a ∃! b a A | ¬ F a = a c a A | ¬ F a = a ¬ c R b
10 4 5 7 8 9 syl22anc R We A R Se A F Isom R , R A A a A | ¬ F a = a ∃! b a A | ¬ F a = a c a A | ¬ F a = a ¬ c R b
11 reurex ∃! b a A | ¬ F a = a c a A | ¬ F a = a ¬ c R b b a A | ¬ F a = a c a A | ¬ F a = a ¬ c R b
12 10 11 syl R We A R Se A F Isom R , R A A a A | ¬ F a = a b a A | ¬ F a = a c a A | ¬ F a = a ¬ c R b
13 12 ex R We A R Se A F Isom R , R A A a A | ¬ F a = a b a A | ¬ F a = a c a A | ¬ F a = a ¬ c R b
14 fveq2 a = b F a = F b
15 id a = b a = b
16 14 15 eqeq12d a = b F a = a F b = b
17 16 notbid a = b ¬ F a = a ¬ F b = b
18 17 elrab b a A | ¬ F a = a b A ¬ F b = b
19 fveq2 a = c F a = F c
20 id a = c a = c
21 19 20 eqeq12d a = c F a = a F c = c
22 21 notbid a = c ¬ F a = a ¬ F c = c
23 22 ralrab c a A | ¬ F a = a ¬ c R b c A ¬ F c = c ¬ c R b
24 con34b c R b F c = c ¬ F c = c ¬ c R b
25 24 bicomi ¬ F c = c ¬ c R b c R b F c = c
26 25 ralbii c A ¬ F c = c ¬ c R b c A c R b F c = c
27 23 26 bitri c a A | ¬ F a = a ¬ c R b c A c R b F c = c
28 simpl3 R We A R Se A F Isom R , R A A b A ¬ F b = b F Isom R , R A A
29 isof1o F Isom R , R A A F : A 1-1 onto A
30 28 29 syl R We A R Se A F Isom R , R A A b A ¬ F b = b F : A 1-1 onto A
31 f1of F : A 1-1 onto A F : A A
32 30 31 syl R We A R Se A F Isom R , R A A b A ¬ F b = b F : A A
33 simprl R We A R Se A F Isom R , R A A b A ¬ F b = b b A
34 32 33 ffvelrnd R We A R Se A F Isom R , R A A b A ¬ F b = b F b A
35 breq1 c = F b c R b F b R b
36 fveq2 c = F b F c = F F b
37 id c = F b c = F b
38 36 37 eqeq12d c = F b F c = c F F b = F b
39 35 38 imbi12d c = F b c R b F c = c F b R b F F b = F b
40 39 rspcv F b A c A c R b F c = c F b R b F F b = F b
41 34 40 syl R We A R Se A F Isom R , R A A b A ¬ F b = b c A c R b F c = c F b R b F F b = F b
42 41 com23 R We A R Se A F Isom R , R A A b A ¬ F b = b F b R b c A c R b F c = c F F b = F b
43 42 imp R We A R Se A F Isom R , R A A b A ¬ F b = b F b R b c A c R b F c = c F F b = F b
44 f1of1 F : A 1-1 onto A F : A 1-1 A
45 30 44 syl R We A R Se A F Isom R , R A A b A ¬ F b = b F : A 1-1 A
46 f1fveq F : A 1-1 A F b A b A F F b = F b F b = b
47 45 34 33 46 syl12anc R We A R Se A F Isom R , R A A b A ¬ F b = b F F b = F b F b = b
48 pm2.21 ¬ F b = b F b = b a A F a = a
49 48 ad2antll R We A R Se A F Isom R , R A A b A ¬ F b = b F b = b a A F a = a
50 47 49 sylbid R We A R Se A F Isom R , R A A b A ¬ F b = b F F b = F b a A F a = a
51 50 adantr R We A R Se A F Isom R , R A A b A ¬ F b = b F b R b F F b = F b a A F a = a
52 43 51 syld R We A R Se A F Isom R , R A A b A ¬ F b = b F b R b c A c R b F c = c a A F a = a
53 f1ocnv F : A 1-1 onto A F -1 : A 1-1 onto A
54 f1of F -1 : A 1-1 onto A F -1 : A A
55 30 53 54 3syl R We A R Se A F Isom R , R A A b A ¬ F b = b F -1 : A A
56 55 33 ffvelrnd R We A R Se A F Isom R , R A A b A ¬ F b = b F -1 b A
57 56 adantr R We A R Se A F Isom R , R A A b A ¬ F b = b b R F b F -1 b A
58 isorel F Isom R , R A A F -1 b A b A F -1 b R b F F -1 b R F b
59 28 56 33 58 syl12anc R We A R Se A F Isom R , R A A b A ¬ F b = b F -1 b R b F F -1 b R F b
60 f1ocnvfv2 F : A 1-1 onto A b A F F -1 b = b
61 30 33 60 syl2anc R We A R Se A F Isom R , R A A b A ¬ F b = b F F -1 b = b
62 61 breq1d R We A R Se A F Isom R , R A A b A ¬ F b = b F F -1 b R F b b R F b
63 59 62 bitr2d R We A R Se A F Isom R , R A A b A ¬ F b = b b R F b F -1 b R b
64 63 biimpa R We A R Se A F Isom R , R A A b A ¬ F b = b b R F b F -1 b R b
65 breq1 c = F -1 b c R b F -1 b R b
66 fveq2 c = F -1 b F c = F F -1 b
67 id c = F -1 b c = F -1 b
68 66 67 eqeq12d c = F -1 b F c = c F F -1 b = F -1 b
69 65 68 imbi12d c = F -1 b c R b F c = c F -1 b R b F F -1 b = F -1 b
70 69 rspcv F -1 b A c A c R b F c = c F -1 b R b F F -1 b = F -1 b
71 70 com23 F -1 b A F -1 b R b c A c R b F c = c F F -1 b = F -1 b
72 57 64 71 sylc R We A R Se A F Isom R , R A A b A ¬ F b = b b R F b c A c R b F c = c F F -1 b = F -1 b
73 simplrr R We A R Se A F Isom R , R A A b A ¬ F b = b F F -1 b = F -1 b ¬ F b = b
74 fveq2 F F -1 b = F -1 b F F F -1 b = F F -1 b
75 74 adantl R We A R Se A F Isom R , R A A b A ¬ F b = b F F -1 b = F -1 b F F F -1 b = F F -1 b
76 61 fveq2d R We A R Se A F Isom R , R A A b A ¬ F b = b F F F -1 b = F b
77 76 adantr R We A R Se A F Isom R , R A A b A ¬ F b = b F F -1 b = F -1 b F F F -1 b = F b
78 61 adantr R We A R Se A F Isom R , R A A b A ¬ F b = b F F -1 b = F -1 b F F -1 b = b
79 75 77 78 3eqtr3d R We A R Se A F Isom R , R A A b A ¬ F b = b F F -1 b = F -1 b F b = b
80 73 79 48 sylc R We A R Se A F Isom R , R A A b A ¬ F b = b F F -1 b = F -1 b a A F a = a
81 80 ex R We A R Se A F Isom R , R A A b A ¬ F b = b F F -1 b = F -1 b a A F a = a
82 81 adantr R We A R Se A F Isom R , R A A b A ¬ F b = b b R F b F F -1 b = F -1 b a A F a = a
83 72 82 syld R We A R Se A F Isom R , R A A b A ¬ F b = b b R F b c A c R b F c = c a A F a = a
84 simprr R We A R Se A F Isom R , R A A b A ¬ F b = b ¬ F b = b
85 simpl1 R We A R Se A F Isom R , R A A b A ¬ F b = b R We A
86 weso R We A R Or A
87 85 86 syl R We A R Se A F Isom R , R A A b A ¬ F b = b R Or A
88 sotrieq R Or A F b A b A F b = b ¬ F b R b b R F b
89 87 34 33 88 syl12anc R We A R Se A F Isom R , R A A b A ¬ F b = b F b = b ¬ F b R b b R F b
90 89 con2bid R We A R Se A F Isom R , R A A b A ¬ F b = b F b R b b R F b ¬ F b = b
91 84 90 mpbird R We A R Se A F Isom R , R A A b A ¬ F b = b F b R b b R F b
92 52 83 91 mpjaodan R We A R Se A F Isom R , R A A b A ¬ F b = b c A c R b F c = c a A F a = a
93 27 92 syl5bi R We A R Se A F Isom R , R A A b A ¬ F b = b c a A | ¬ F a = a ¬ c R b a A F a = a
94 93 ex R We A R Se A F Isom R , R A A b A ¬ F b = b c a A | ¬ F a = a ¬ c R b a A F a = a
95 18 94 syl5bi R We A R Se A F Isom R , R A A b a A | ¬ F a = a c a A | ¬ F a = a ¬ c R b a A F a = a
96 95 rexlimdv R We A R Se A F Isom R , R A A b a A | ¬ F a = a c a A | ¬ F a = a ¬ c R b a A F a = a
97 13 96 syld R We A R Se A F Isom R , R A A a A | ¬ F a = a a A F a = a
98 3 97 syl5bir R We A R Se A F Isom R , R A A ¬ a A F a = a a A F a = a
99 98 pm2.18d R We A R Se A F Isom R , R A A a A F a = a
100 fvresi a A I A a = a
101 100 eqeq2d a A F a = I A a F a = a
102 101 biimprd a A F a = a F a = I A a
103 102 ralimia a A F a = a a A F a = I A a
104 99 103 syl R We A R Se A F Isom R , R A A a A F a = I A a
105 29 3ad2ant3 R We A R Se A F Isom R , R A A F : A 1-1 onto A
106 f1ofn F : A 1-1 onto A F Fn A
107 105 106 syl R We A R Se A F Isom R , R A A F Fn A
108 fnresi I A Fn A
109 108 a1i R We A R Se A F Isom R , R A A I A Fn A
110 eqfnfv F Fn A I A Fn A F = I A a A F a = I A a
111 107 109 110 syl2anc R We A R Se A F Isom R , R A A F = I A a A F a = I A a
112 104 111 mpbird R We A R Se A F Isom R , R A A F = I A