| Step |
Hyp |
Ref |
Expression |
| 1 |
|
n0 |
|
| 2 |
|
rabeq0 |
|
| 3 |
|
breq1 |
|
| 4 |
3
|
notbid |
|
| 5 |
4
|
cbvralvw |
|
| 6 |
|
breq2 |
|
| 7 |
6
|
notbid |
|
| 8 |
7
|
ralbidv |
|
| 9 |
5 8
|
bitrid |
|
| 10 |
9
|
rspcev |
|
| 11 |
10
|
ex |
|
| 12 |
11
|
ad2antll |
|
| 13 |
2 12
|
biimtrid |
|
| 14 |
|
simprl |
|
| 15 |
|
simplr |
|
| 16 |
|
sess2 |
|
| 17 |
14 15 16
|
sylc |
|
| 18 |
|
simprr |
|
| 19 |
|
seex |
|
| 20 |
17 18 19
|
syl2anc |
|
| 21 |
|
wefr |
|
| 22 |
21
|
ad2antrr |
|
| 23 |
|
ssrab2 |
|
| 24 |
23 14
|
sstrid |
|
| 25 |
|
fri |
|
| 26 |
25
|
expr |
|
| 27 |
20 22 24 26
|
syl21anc |
|
| 28 |
|
breq1 |
|
| 29 |
28
|
rexrab |
|
| 30 |
|
breq1 |
|
| 31 |
30
|
ralrab |
|
| 32 |
|
weso |
|
| 33 |
32
|
ad2antrr |
|
| 34 |
|
soss |
|
| 35 |
14 33 34
|
sylc |
|
| 36 |
35
|
ad2antrr |
|
| 37 |
|
simpr |
|
| 38 |
|
simplr |
|
| 39 |
18
|
ad2antrr |
|
| 40 |
|
sotr |
|
| 41 |
36 37 38 39 40
|
syl13anc |
|
| 42 |
41
|
ancomsd |
|
| 43 |
42
|
expdimp |
|
| 44 |
43
|
an32s |
|
| 45 |
44
|
con3d |
|
| 46 |
|
idd |
|
| 47 |
45 46
|
jad |
|
| 48 |
47
|
ralimdva |
|
| 49 |
31 48
|
biimtrid |
|
| 50 |
49
|
expimpd |
|
| 51 |
50
|
reximdva |
|
| 52 |
29 51
|
biimtrid |
|
| 53 |
27 52
|
syld |
|
| 54 |
13 53
|
pm2.61dne |
|
| 55 |
54
|
expr |
|
| 56 |
55
|
exlimdv |
|
| 57 |
1 56
|
biimtrid |
|
| 58 |
57
|
impr |
|
| 59 |
|
simprl |
|
| 60 |
32
|
ad2antrr |
|
| 61 |
59 60 34
|
sylc |
|
| 62 |
|
somo |
|
| 63 |
61 62
|
syl |
|
| 64 |
|
reu5 |
|
| 65 |
58 63 64
|
sylanbrc |
|