| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rabn0 |
⊢ ( { 𝑎 ∈ 𝐴 ∣ ¬ ( 𝐹 ‘ 𝑎 ) = 𝑎 } ≠ ∅ ↔ ∃ 𝑎 ∈ 𝐴 ¬ ( 𝐹 ‘ 𝑎 ) = 𝑎 ) |
| 2 |
|
rexnal |
⊢ ( ∃ 𝑎 ∈ 𝐴 ¬ ( 𝐹 ‘ 𝑎 ) = 𝑎 ↔ ¬ ∀ 𝑎 ∈ 𝐴 ( 𝐹 ‘ 𝑎 ) = 𝑎 ) |
| 3 |
1 2
|
bitri |
⊢ ( { 𝑎 ∈ 𝐴 ∣ ¬ ( 𝐹 ‘ 𝑎 ) = 𝑎 } ≠ ∅ ↔ ¬ ∀ 𝑎 ∈ 𝐴 ( 𝐹 ‘ 𝑎 ) = 𝑎 ) |
| 4 |
|
simpl1 |
⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ 𝐹 Isom 𝑅 , 𝑅 ( 𝐴 , 𝐴 ) ) ∧ { 𝑎 ∈ 𝐴 ∣ ¬ ( 𝐹 ‘ 𝑎 ) = 𝑎 } ≠ ∅ ) → 𝑅 We 𝐴 ) |
| 5 |
|
simpl2 |
⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ 𝐹 Isom 𝑅 , 𝑅 ( 𝐴 , 𝐴 ) ) ∧ { 𝑎 ∈ 𝐴 ∣ ¬ ( 𝐹 ‘ 𝑎 ) = 𝑎 } ≠ ∅ ) → 𝑅 Se 𝐴 ) |
| 6 |
|
ssrab2 |
⊢ { 𝑎 ∈ 𝐴 ∣ ¬ ( 𝐹 ‘ 𝑎 ) = 𝑎 } ⊆ 𝐴 |
| 7 |
6
|
a1i |
⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ 𝐹 Isom 𝑅 , 𝑅 ( 𝐴 , 𝐴 ) ) ∧ { 𝑎 ∈ 𝐴 ∣ ¬ ( 𝐹 ‘ 𝑎 ) = 𝑎 } ≠ ∅ ) → { 𝑎 ∈ 𝐴 ∣ ¬ ( 𝐹 ‘ 𝑎 ) = 𝑎 } ⊆ 𝐴 ) |
| 8 |
|
simpr |
⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ 𝐹 Isom 𝑅 , 𝑅 ( 𝐴 , 𝐴 ) ) ∧ { 𝑎 ∈ 𝐴 ∣ ¬ ( 𝐹 ‘ 𝑎 ) = 𝑎 } ≠ ∅ ) → { 𝑎 ∈ 𝐴 ∣ ¬ ( 𝐹 ‘ 𝑎 ) = 𝑎 } ≠ ∅ ) |
| 9 |
|
wereu2 |
⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ ( { 𝑎 ∈ 𝐴 ∣ ¬ ( 𝐹 ‘ 𝑎 ) = 𝑎 } ⊆ 𝐴 ∧ { 𝑎 ∈ 𝐴 ∣ ¬ ( 𝐹 ‘ 𝑎 ) = 𝑎 } ≠ ∅ ) ) → ∃! 𝑏 ∈ { 𝑎 ∈ 𝐴 ∣ ¬ ( 𝐹 ‘ 𝑎 ) = 𝑎 } ∀ 𝑐 ∈ { 𝑎 ∈ 𝐴 ∣ ¬ ( 𝐹 ‘ 𝑎 ) = 𝑎 } ¬ 𝑐 𝑅 𝑏 ) |
| 10 |
4 5 7 8 9
|
syl22anc |
⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ 𝐹 Isom 𝑅 , 𝑅 ( 𝐴 , 𝐴 ) ) ∧ { 𝑎 ∈ 𝐴 ∣ ¬ ( 𝐹 ‘ 𝑎 ) = 𝑎 } ≠ ∅ ) → ∃! 𝑏 ∈ { 𝑎 ∈ 𝐴 ∣ ¬ ( 𝐹 ‘ 𝑎 ) = 𝑎 } ∀ 𝑐 ∈ { 𝑎 ∈ 𝐴 ∣ ¬ ( 𝐹 ‘ 𝑎 ) = 𝑎 } ¬ 𝑐 𝑅 𝑏 ) |
| 11 |
|
reurex |
⊢ ( ∃! 𝑏 ∈ { 𝑎 ∈ 𝐴 ∣ ¬ ( 𝐹 ‘ 𝑎 ) = 𝑎 } ∀ 𝑐 ∈ { 𝑎 ∈ 𝐴 ∣ ¬ ( 𝐹 ‘ 𝑎 ) = 𝑎 } ¬ 𝑐 𝑅 𝑏 → ∃ 𝑏 ∈ { 𝑎 ∈ 𝐴 ∣ ¬ ( 𝐹 ‘ 𝑎 ) = 𝑎 } ∀ 𝑐 ∈ { 𝑎 ∈ 𝐴 ∣ ¬ ( 𝐹 ‘ 𝑎 ) = 𝑎 } ¬ 𝑐 𝑅 𝑏 ) |
| 12 |
10 11
|
syl |
⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ 𝐹 Isom 𝑅 , 𝑅 ( 𝐴 , 𝐴 ) ) ∧ { 𝑎 ∈ 𝐴 ∣ ¬ ( 𝐹 ‘ 𝑎 ) = 𝑎 } ≠ ∅ ) → ∃ 𝑏 ∈ { 𝑎 ∈ 𝐴 ∣ ¬ ( 𝐹 ‘ 𝑎 ) = 𝑎 } ∀ 𝑐 ∈ { 𝑎 ∈ 𝐴 ∣ ¬ ( 𝐹 ‘ 𝑎 ) = 𝑎 } ¬ 𝑐 𝑅 𝑏 ) |
| 13 |
12
|
ex |
⊢ ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ 𝐹 Isom 𝑅 , 𝑅 ( 𝐴 , 𝐴 ) ) → ( { 𝑎 ∈ 𝐴 ∣ ¬ ( 𝐹 ‘ 𝑎 ) = 𝑎 } ≠ ∅ → ∃ 𝑏 ∈ { 𝑎 ∈ 𝐴 ∣ ¬ ( 𝐹 ‘ 𝑎 ) = 𝑎 } ∀ 𝑐 ∈ { 𝑎 ∈ 𝐴 ∣ ¬ ( 𝐹 ‘ 𝑎 ) = 𝑎 } ¬ 𝑐 𝑅 𝑏 ) ) |
| 14 |
|
fveq2 |
⊢ ( 𝑎 = 𝑏 → ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ) |
| 15 |
|
id |
⊢ ( 𝑎 = 𝑏 → 𝑎 = 𝑏 ) |
| 16 |
14 15
|
eqeq12d |
⊢ ( 𝑎 = 𝑏 → ( ( 𝐹 ‘ 𝑎 ) = 𝑎 ↔ ( 𝐹 ‘ 𝑏 ) = 𝑏 ) ) |
| 17 |
16
|
notbid |
⊢ ( 𝑎 = 𝑏 → ( ¬ ( 𝐹 ‘ 𝑎 ) = 𝑎 ↔ ¬ ( 𝐹 ‘ 𝑏 ) = 𝑏 ) ) |
| 18 |
17
|
elrab |
⊢ ( 𝑏 ∈ { 𝑎 ∈ 𝐴 ∣ ¬ ( 𝐹 ‘ 𝑎 ) = 𝑎 } ↔ ( 𝑏 ∈ 𝐴 ∧ ¬ ( 𝐹 ‘ 𝑏 ) = 𝑏 ) ) |
| 19 |
|
fveq2 |
⊢ ( 𝑎 = 𝑐 → ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑐 ) ) |
| 20 |
|
id |
⊢ ( 𝑎 = 𝑐 → 𝑎 = 𝑐 ) |
| 21 |
19 20
|
eqeq12d |
⊢ ( 𝑎 = 𝑐 → ( ( 𝐹 ‘ 𝑎 ) = 𝑎 ↔ ( 𝐹 ‘ 𝑐 ) = 𝑐 ) ) |
| 22 |
21
|
notbid |
⊢ ( 𝑎 = 𝑐 → ( ¬ ( 𝐹 ‘ 𝑎 ) = 𝑎 ↔ ¬ ( 𝐹 ‘ 𝑐 ) = 𝑐 ) ) |
| 23 |
22
|
ralrab |
⊢ ( ∀ 𝑐 ∈ { 𝑎 ∈ 𝐴 ∣ ¬ ( 𝐹 ‘ 𝑎 ) = 𝑎 } ¬ 𝑐 𝑅 𝑏 ↔ ∀ 𝑐 ∈ 𝐴 ( ¬ ( 𝐹 ‘ 𝑐 ) = 𝑐 → ¬ 𝑐 𝑅 𝑏 ) ) |
| 24 |
|
con34b |
⊢ ( ( 𝑐 𝑅 𝑏 → ( 𝐹 ‘ 𝑐 ) = 𝑐 ) ↔ ( ¬ ( 𝐹 ‘ 𝑐 ) = 𝑐 → ¬ 𝑐 𝑅 𝑏 ) ) |
| 25 |
24
|
bicomi |
⊢ ( ( ¬ ( 𝐹 ‘ 𝑐 ) = 𝑐 → ¬ 𝑐 𝑅 𝑏 ) ↔ ( 𝑐 𝑅 𝑏 → ( 𝐹 ‘ 𝑐 ) = 𝑐 ) ) |
| 26 |
25
|
ralbii |
⊢ ( ∀ 𝑐 ∈ 𝐴 ( ¬ ( 𝐹 ‘ 𝑐 ) = 𝑐 → ¬ 𝑐 𝑅 𝑏 ) ↔ ∀ 𝑐 ∈ 𝐴 ( 𝑐 𝑅 𝑏 → ( 𝐹 ‘ 𝑐 ) = 𝑐 ) ) |
| 27 |
23 26
|
bitri |
⊢ ( ∀ 𝑐 ∈ { 𝑎 ∈ 𝐴 ∣ ¬ ( 𝐹 ‘ 𝑎 ) = 𝑎 } ¬ 𝑐 𝑅 𝑏 ↔ ∀ 𝑐 ∈ 𝐴 ( 𝑐 𝑅 𝑏 → ( 𝐹 ‘ 𝑐 ) = 𝑐 ) ) |
| 28 |
|
simpl3 |
⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ 𝐹 Isom 𝑅 , 𝑅 ( 𝐴 , 𝐴 ) ) ∧ ( 𝑏 ∈ 𝐴 ∧ ¬ ( 𝐹 ‘ 𝑏 ) = 𝑏 ) ) → 𝐹 Isom 𝑅 , 𝑅 ( 𝐴 , 𝐴 ) ) |
| 29 |
|
isof1o |
⊢ ( 𝐹 Isom 𝑅 , 𝑅 ( 𝐴 , 𝐴 ) → 𝐹 : 𝐴 –1-1-onto→ 𝐴 ) |
| 30 |
28 29
|
syl |
⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ 𝐹 Isom 𝑅 , 𝑅 ( 𝐴 , 𝐴 ) ) ∧ ( 𝑏 ∈ 𝐴 ∧ ¬ ( 𝐹 ‘ 𝑏 ) = 𝑏 ) ) → 𝐹 : 𝐴 –1-1-onto→ 𝐴 ) |
| 31 |
|
f1of |
⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐴 → 𝐹 : 𝐴 ⟶ 𝐴 ) |
| 32 |
30 31
|
syl |
⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ 𝐹 Isom 𝑅 , 𝑅 ( 𝐴 , 𝐴 ) ) ∧ ( 𝑏 ∈ 𝐴 ∧ ¬ ( 𝐹 ‘ 𝑏 ) = 𝑏 ) ) → 𝐹 : 𝐴 ⟶ 𝐴 ) |
| 33 |
|
simprl |
⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ 𝐹 Isom 𝑅 , 𝑅 ( 𝐴 , 𝐴 ) ) ∧ ( 𝑏 ∈ 𝐴 ∧ ¬ ( 𝐹 ‘ 𝑏 ) = 𝑏 ) ) → 𝑏 ∈ 𝐴 ) |
| 34 |
32 33
|
ffvelcdmd |
⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ 𝐹 Isom 𝑅 , 𝑅 ( 𝐴 , 𝐴 ) ) ∧ ( 𝑏 ∈ 𝐴 ∧ ¬ ( 𝐹 ‘ 𝑏 ) = 𝑏 ) ) → ( 𝐹 ‘ 𝑏 ) ∈ 𝐴 ) |
| 35 |
|
breq1 |
⊢ ( 𝑐 = ( 𝐹 ‘ 𝑏 ) → ( 𝑐 𝑅 𝑏 ↔ ( 𝐹 ‘ 𝑏 ) 𝑅 𝑏 ) ) |
| 36 |
|
fveq2 |
⊢ ( 𝑐 = ( 𝐹 ‘ 𝑏 ) → ( 𝐹 ‘ 𝑐 ) = ( 𝐹 ‘ ( 𝐹 ‘ 𝑏 ) ) ) |
| 37 |
|
id |
⊢ ( 𝑐 = ( 𝐹 ‘ 𝑏 ) → 𝑐 = ( 𝐹 ‘ 𝑏 ) ) |
| 38 |
36 37
|
eqeq12d |
⊢ ( 𝑐 = ( 𝐹 ‘ 𝑏 ) → ( ( 𝐹 ‘ 𝑐 ) = 𝑐 ↔ ( 𝐹 ‘ ( 𝐹 ‘ 𝑏 ) ) = ( 𝐹 ‘ 𝑏 ) ) ) |
| 39 |
35 38
|
imbi12d |
⊢ ( 𝑐 = ( 𝐹 ‘ 𝑏 ) → ( ( 𝑐 𝑅 𝑏 → ( 𝐹 ‘ 𝑐 ) = 𝑐 ) ↔ ( ( 𝐹 ‘ 𝑏 ) 𝑅 𝑏 → ( 𝐹 ‘ ( 𝐹 ‘ 𝑏 ) ) = ( 𝐹 ‘ 𝑏 ) ) ) ) |
| 40 |
39
|
rspcv |
⊢ ( ( 𝐹 ‘ 𝑏 ) ∈ 𝐴 → ( ∀ 𝑐 ∈ 𝐴 ( 𝑐 𝑅 𝑏 → ( 𝐹 ‘ 𝑐 ) = 𝑐 ) → ( ( 𝐹 ‘ 𝑏 ) 𝑅 𝑏 → ( 𝐹 ‘ ( 𝐹 ‘ 𝑏 ) ) = ( 𝐹 ‘ 𝑏 ) ) ) ) |
| 41 |
34 40
|
syl |
⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ 𝐹 Isom 𝑅 , 𝑅 ( 𝐴 , 𝐴 ) ) ∧ ( 𝑏 ∈ 𝐴 ∧ ¬ ( 𝐹 ‘ 𝑏 ) = 𝑏 ) ) → ( ∀ 𝑐 ∈ 𝐴 ( 𝑐 𝑅 𝑏 → ( 𝐹 ‘ 𝑐 ) = 𝑐 ) → ( ( 𝐹 ‘ 𝑏 ) 𝑅 𝑏 → ( 𝐹 ‘ ( 𝐹 ‘ 𝑏 ) ) = ( 𝐹 ‘ 𝑏 ) ) ) ) |
| 42 |
41
|
com23 |
⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ 𝐹 Isom 𝑅 , 𝑅 ( 𝐴 , 𝐴 ) ) ∧ ( 𝑏 ∈ 𝐴 ∧ ¬ ( 𝐹 ‘ 𝑏 ) = 𝑏 ) ) → ( ( 𝐹 ‘ 𝑏 ) 𝑅 𝑏 → ( ∀ 𝑐 ∈ 𝐴 ( 𝑐 𝑅 𝑏 → ( 𝐹 ‘ 𝑐 ) = 𝑐 ) → ( 𝐹 ‘ ( 𝐹 ‘ 𝑏 ) ) = ( 𝐹 ‘ 𝑏 ) ) ) ) |
| 43 |
42
|
imp |
⊢ ( ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ 𝐹 Isom 𝑅 , 𝑅 ( 𝐴 , 𝐴 ) ) ∧ ( 𝑏 ∈ 𝐴 ∧ ¬ ( 𝐹 ‘ 𝑏 ) = 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) 𝑅 𝑏 ) → ( ∀ 𝑐 ∈ 𝐴 ( 𝑐 𝑅 𝑏 → ( 𝐹 ‘ 𝑐 ) = 𝑐 ) → ( 𝐹 ‘ ( 𝐹 ‘ 𝑏 ) ) = ( 𝐹 ‘ 𝑏 ) ) ) |
| 44 |
|
f1of1 |
⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐴 → 𝐹 : 𝐴 –1-1→ 𝐴 ) |
| 45 |
30 44
|
syl |
⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ 𝐹 Isom 𝑅 , 𝑅 ( 𝐴 , 𝐴 ) ) ∧ ( 𝑏 ∈ 𝐴 ∧ ¬ ( 𝐹 ‘ 𝑏 ) = 𝑏 ) ) → 𝐹 : 𝐴 –1-1→ 𝐴 ) |
| 46 |
|
f1fveq |
⊢ ( ( 𝐹 : 𝐴 –1-1→ 𝐴 ∧ ( ( 𝐹 ‘ 𝑏 ) ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) ) → ( ( 𝐹 ‘ ( 𝐹 ‘ 𝑏 ) ) = ( 𝐹 ‘ 𝑏 ) ↔ ( 𝐹 ‘ 𝑏 ) = 𝑏 ) ) |
| 47 |
45 34 33 46
|
syl12anc |
⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ 𝐹 Isom 𝑅 , 𝑅 ( 𝐴 , 𝐴 ) ) ∧ ( 𝑏 ∈ 𝐴 ∧ ¬ ( 𝐹 ‘ 𝑏 ) = 𝑏 ) ) → ( ( 𝐹 ‘ ( 𝐹 ‘ 𝑏 ) ) = ( 𝐹 ‘ 𝑏 ) ↔ ( 𝐹 ‘ 𝑏 ) = 𝑏 ) ) |
| 48 |
|
pm2.21 |
⊢ ( ¬ ( 𝐹 ‘ 𝑏 ) = 𝑏 → ( ( 𝐹 ‘ 𝑏 ) = 𝑏 → ∀ 𝑎 ∈ 𝐴 ( 𝐹 ‘ 𝑎 ) = 𝑎 ) ) |
| 49 |
48
|
ad2antll |
⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ 𝐹 Isom 𝑅 , 𝑅 ( 𝐴 , 𝐴 ) ) ∧ ( 𝑏 ∈ 𝐴 ∧ ¬ ( 𝐹 ‘ 𝑏 ) = 𝑏 ) ) → ( ( 𝐹 ‘ 𝑏 ) = 𝑏 → ∀ 𝑎 ∈ 𝐴 ( 𝐹 ‘ 𝑎 ) = 𝑎 ) ) |
| 50 |
47 49
|
sylbid |
⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ 𝐹 Isom 𝑅 , 𝑅 ( 𝐴 , 𝐴 ) ) ∧ ( 𝑏 ∈ 𝐴 ∧ ¬ ( 𝐹 ‘ 𝑏 ) = 𝑏 ) ) → ( ( 𝐹 ‘ ( 𝐹 ‘ 𝑏 ) ) = ( 𝐹 ‘ 𝑏 ) → ∀ 𝑎 ∈ 𝐴 ( 𝐹 ‘ 𝑎 ) = 𝑎 ) ) |
| 51 |
50
|
adantr |
⊢ ( ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ 𝐹 Isom 𝑅 , 𝑅 ( 𝐴 , 𝐴 ) ) ∧ ( 𝑏 ∈ 𝐴 ∧ ¬ ( 𝐹 ‘ 𝑏 ) = 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) 𝑅 𝑏 ) → ( ( 𝐹 ‘ ( 𝐹 ‘ 𝑏 ) ) = ( 𝐹 ‘ 𝑏 ) → ∀ 𝑎 ∈ 𝐴 ( 𝐹 ‘ 𝑎 ) = 𝑎 ) ) |
| 52 |
43 51
|
syld |
⊢ ( ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ 𝐹 Isom 𝑅 , 𝑅 ( 𝐴 , 𝐴 ) ) ∧ ( 𝑏 ∈ 𝐴 ∧ ¬ ( 𝐹 ‘ 𝑏 ) = 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) 𝑅 𝑏 ) → ( ∀ 𝑐 ∈ 𝐴 ( 𝑐 𝑅 𝑏 → ( 𝐹 ‘ 𝑐 ) = 𝑐 ) → ∀ 𝑎 ∈ 𝐴 ( 𝐹 ‘ 𝑎 ) = 𝑎 ) ) |
| 53 |
|
f1ocnv |
⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐴 → ◡ 𝐹 : 𝐴 –1-1-onto→ 𝐴 ) |
| 54 |
|
f1of |
⊢ ( ◡ 𝐹 : 𝐴 –1-1-onto→ 𝐴 → ◡ 𝐹 : 𝐴 ⟶ 𝐴 ) |
| 55 |
30 53 54
|
3syl |
⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ 𝐹 Isom 𝑅 , 𝑅 ( 𝐴 , 𝐴 ) ) ∧ ( 𝑏 ∈ 𝐴 ∧ ¬ ( 𝐹 ‘ 𝑏 ) = 𝑏 ) ) → ◡ 𝐹 : 𝐴 ⟶ 𝐴 ) |
| 56 |
55 33
|
ffvelcdmd |
⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ 𝐹 Isom 𝑅 , 𝑅 ( 𝐴 , 𝐴 ) ) ∧ ( 𝑏 ∈ 𝐴 ∧ ¬ ( 𝐹 ‘ 𝑏 ) = 𝑏 ) ) → ( ◡ 𝐹 ‘ 𝑏 ) ∈ 𝐴 ) |
| 57 |
56
|
adantr |
⊢ ( ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ 𝐹 Isom 𝑅 , 𝑅 ( 𝐴 , 𝐴 ) ) ∧ ( 𝑏 ∈ 𝐴 ∧ ¬ ( 𝐹 ‘ 𝑏 ) = 𝑏 ) ) ∧ 𝑏 𝑅 ( 𝐹 ‘ 𝑏 ) ) → ( ◡ 𝐹 ‘ 𝑏 ) ∈ 𝐴 ) |
| 58 |
|
isorel |
⊢ ( ( 𝐹 Isom 𝑅 , 𝑅 ( 𝐴 , 𝐴 ) ∧ ( ( ◡ 𝐹 ‘ 𝑏 ) ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) ) → ( ( ◡ 𝐹 ‘ 𝑏 ) 𝑅 𝑏 ↔ ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑏 ) ) 𝑅 ( 𝐹 ‘ 𝑏 ) ) ) |
| 59 |
28 56 33 58
|
syl12anc |
⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ 𝐹 Isom 𝑅 , 𝑅 ( 𝐴 , 𝐴 ) ) ∧ ( 𝑏 ∈ 𝐴 ∧ ¬ ( 𝐹 ‘ 𝑏 ) = 𝑏 ) ) → ( ( ◡ 𝐹 ‘ 𝑏 ) 𝑅 𝑏 ↔ ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑏 ) ) 𝑅 ( 𝐹 ‘ 𝑏 ) ) ) |
| 60 |
|
f1ocnvfv2 |
⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐴 ∧ 𝑏 ∈ 𝐴 ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑏 ) ) = 𝑏 ) |
| 61 |
30 33 60
|
syl2anc |
⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ 𝐹 Isom 𝑅 , 𝑅 ( 𝐴 , 𝐴 ) ) ∧ ( 𝑏 ∈ 𝐴 ∧ ¬ ( 𝐹 ‘ 𝑏 ) = 𝑏 ) ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑏 ) ) = 𝑏 ) |
| 62 |
61
|
breq1d |
⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ 𝐹 Isom 𝑅 , 𝑅 ( 𝐴 , 𝐴 ) ) ∧ ( 𝑏 ∈ 𝐴 ∧ ¬ ( 𝐹 ‘ 𝑏 ) = 𝑏 ) ) → ( ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑏 ) ) 𝑅 ( 𝐹 ‘ 𝑏 ) ↔ 𝑏 𝑅 ( 𝐹 ‘ 𝑏 ) ) ) |
| 63 |
59 62
|
bitr2d |
⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ 𝐹 Isom 𝑅 , 𝑅 ( 𝐴 , 𝐴 ) ) ∧ ( 𝑏 ∈ 𝐴 ∧ ¬ ( 𝐹 ‘ 𝑏 ) = 𝑏 ) ) → ( 𝑏 𝑅 ( 𝐹 ‘ 𝑏 ) ↔ ( ◡ 𝐹 ‘ 𝑏 ) 𝑅 𝑏 ) ) |
| 64 |
63
|
biimpa |
⊢ ( ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ 𝐹 Isom 𝑅 , 𝑅 ( 𝐴 , 𝐴 ) ) ∧ ( 𝑏 ∈ 𝐴 ∧ ¬ ( 𝐹 ‘ 𝑏 ) = 𝑏 ) ) ∧ 𝑏 𝑅 ( 𝐹 ‘ 𝑏 ) ) → ( ◡ 𝐹 ‘ 𝑏 ) 𝑅 𝑏 ) |
| 65 |
|
breq1 |
⊢ ( 𝑐 = ( ◡ 𝐹 ‘ 𝑏 ) → ( 𝑐 𝑅 𝑏 ↔ ( ◡ 𝐹 ‘ 𝑏 ) 𝑅 𝑏 ) ) |
| 66 |
|
fveq2 |
⊢ ( 𝑐 = ( ◡ 𝐹 ‘ 𝑏 ) → ( 𝐹 ‘ 𝑐 ) = ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑏 ) ) ) |
| 67 |
|
id |
⊢ ( 𝑐 = ( ◡ 𝐹 ‘ 𝑏 ) → 𝑐 = ( ◡ 𝐹 ‘ 𝑏 ) ) |
| 68 |
66 67
|
eqeq12d |
⊢ ( 𝑐 = ( ◡ 𝐹 ‘ 𝑏 ) → ( ( 𝐹 ‘ 𝑐 ) = 𝑐 ↔ ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑏 ) ) = ( ◡ 𝐹 ‘ 𝑏 ) ) ) |
| 69 |
65 68
|
imbi12d |
⊢ ( 𝑐 = ( ◡ 𝐹 ‘ 𝑏 ) → ( ( 𝑐 𝑅 𝑏 → ( 𝐹 ‘ 𝑐 ) = 𝑐 ) ↔ ( ( ◡ 𝐹 ‘ 𝑏 ) 𝑅 𝑏 → ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑏 ) ) = ( ◡ 𝐹 ‘ 𝑏 ) ) ) ) |
| 70 |
69
|
rspcv |
⊢ ( ( ◡ 𝐹 ‘ 𝑏 ) ∈ 𝐴 → ( ∀ 𝑐 ∈ 𝐴 ( 𝑐 𝑅 𝑏 → ( 𝐹 ‘ 𝑐 ) = 𝑐 ) → ( ( ◡ 𝐹 ‘ 𝑏 ) 𝑅 𝑏 → ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑏 ) ) = ( ◡ 𝐹 ‘ 𝑏 ) ) ) ) |
| 71 |
70
|
com23 |
⊢ ( ( ◡ 𝐹 ‘ 𝑏 ) ∈ 𝐴 → ( ( ◡ 𝐹 ‘ 𝑏 ) 𝑅 𝑏 → ( ∀ 𝑐 ∈ 𝐴 ( 𝑐 𝑅 𝑏 → ( 𝐹 ‘ 𝑐 ) = 𝑐 ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑏 ) ) = ( ◡ 𝐹 ‘ 𝑏 ) ) ) ) |
| 72 |
57 64 71
|
sylc |
⊢ ( ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ 𝐹 Isom 𝑅 , 𝑅 ( 𝐴 , 𝐴 ) ) ∧ ( 𝑏 ∈ 𝐴 ∧ ¬ ( 𝐹 ‘ 𝑏 ) = 𝑏 ) ) ∧ 𝑏 𝑅 ( 𝐹 ‘ 𝑏 ) ) → ( ∀ 𝑐 ∈ 𝐴 ( 𝑐 𝑅 𝑏 → ( 𝐹 ‘ 𝑐 ) = 𝑐 ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑏 ) ) = ( ◡ 𝐹 ‘ 𝑏 ) ) ) |
| 73 |
|
simplrr |
⊢ ( ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ 𝐹 Isom 𝑅 , 𝑅 ( 𝐴 , 𝐴 ) ) ∧ ( 𝑏 ∈ 𝐴 ∧ ¬ ( 𝐹 ‘ 𝑏 ) = 𝑏 ) ) ∧ ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑏 ) ) = ( ◡ 𝐹 ‘ 𝑏 ) ) → ¬ ( 𝐹 ‘ 𝑏 ) = 𝑏 ) |
| 74 |
|
fveq2 |
⊢ ( ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑏 ) ) = ( ◡ 𝐹 ‘ 𝑏 ) → ( 𝐹 ‘ ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑏 ) ) ) = ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑏 ) ) ) |
| 75 |
74
|
adantl |
⊢ ( ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ 𝐹 Isom 𝑅 , 𝑅 ( 𝐴 , 𝐴 ) ) ∧ ( 𝑏 ∈ 𝐴 ∧ ¬ ( 𝐹 ‘ 𝑏 ) = 𝑏 ) ) ∧ ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑏 ) ) = ( ◡ 𝐹 ‘ 𝑏 ) ) → ( 𝐹 ‘ ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑏 ) ) ) = ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑏 ) ) ) |
| 76 |
61
|
fveq2d |
⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ 𝐹 Isom 𝑅 , 𝑅 ( 𝐴 , 𝐴 ) ) ∧ ( 𝑏 ∈ 𝐴 ∧ ¬ ( 𝐹 ‘ 𝑏 ) = 𝑏 ) ) → ( 𝐹 ‘ ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑏 ) ) ) = ( 𝐹 ‘ 𝑏 ) ) |
| 77 |
76
|
adantr |
⊢ ( ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ 𝐹 Isom 𝑅 , 𝑅 ( 𝐴 , 𝐴 ) ) ∧ ( 𝑏 ∈ 𝐴 ∧ ¬ ( 𝐹 ‘ 𝑏 ) = 𝑏 ) ) ∧ ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑏 ) ) = ( ◡ 𝐹 ‘ 𝑏 ) ) → ( 𝐹 ‘ ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑏 ) ) ) = ( 𝐹 ‘ 𝑏 ) ) |
| 78 |
61
|
adantr |
⊢ ( ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ 𝐹 Isom 𝑅 , 𝑅 ( 𝐴 , 𝐴 ) ) ∧ ( 𝑏 ∈ 𝐴 ∧ ¬ ( 𝐹 ‘ 𝑏 ) = 𝑏 ) ) ∧ ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑏 ) ) = ( ◡ 𝐹 ‘ 𝑏 ) ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑏 ) ) = 𝑏 ) |
| 79 |
75 77 78
|
3eqtr3d |
⊢ ( ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ 𝐹 Isom 𝑅 , 𝑅 ( 𝐴 , 𝐴 ) ) ∧ ( 𝑏 ∈ 𝐴 ∧ ¬ ( 𝐹 ‘ 𝑏 ) = 𝑏 ) ) ∧ ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑏 ) ) = ( ◡ 𝐹 ‘ 𝑏 ) ) → ( 𝐹 ‘ 𝑏 ) = 𝑏 ) |
| 80 |
73 79 48
|
sylc |
⊢ ( ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ 𝐹 Isom 𝑅 , 𝑅 ( 𝐴 , 𝐴 ) ) ∧ ( 𝑏 ∈ 𝐴 ∧ ¬ ( 𝐹 ‘ 𝑏 ) = 𝑏 ) ) ∧ ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑏 ) ) = ( ◡ 𝐹 ‘ 𝑏 ) ) → ∀ 𝑎 ∈ 𝐴 ( 𝐹 ‘ 𝑎 ) = 𝑎 ) |
| 81 |
80
|
ex |
⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ 𝐹 Isom 𝑅 , 𝑅 ( 𝐴 , 𝐴 ) ) ∧ ( 𝑏 ∈ 𝐴 ∧ ¬ ( 𝐹 ‘ 𝑏 ) = 𝑏 ) ) → ( ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑏 ) ) = ( ◡ 𝐹 ‘ 𝑏 ) → ∀ 𝑎 ∈ 𝐴 ( 𝐹 ‘ 𝑎 ) = 𝑎 ) ) |
| 82 |
81
|
adantr |
⊢ ( ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ 𝐹 Isom 𝑅 , 𝑅 ( 𝐴 , 𝐴 ) ) ∧ ( 𝑏 ∈ 𝐴 ∧ ¬ ( 𝐹 ‘ 𝑏 ) = 𝑏 ) ) ∧ 𝑏 𝑅 ( 𝐹 ‘ 𝑏 ) ) → ( ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑏 ) ) = ( ◡ 𝐹 ‘ 𝑏 ) → ∀ 𝑎 ∈ 𝐴 ( 𝐹 ‘ 𝑎 ) = 𝑎 ) ) |
| 83 |
72 82
|
syld |
⊢ ( ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ 𝐹 Isom 𝑅 , 𝑅 ( 𝐴 , 𝐴 ) ) ∧ ( 𝑏 ∈ 𝐴 ∧ ¬ ( 𝐹 ‘ 𝑏 ) = 𝑏 ) ) ∧ 𝑏 𝑅 ( 𝐹 ‘ 𝑏 ) ) → ( ∀ 𝑐 ∈ 𝐴 ( 𝑐 𝑅 𝑏 → ( 𝐹 ‘ 𝑐 ) = 𝑐 ) → ∀ 𝑎 ∈ 𝐴 ( 𝐹 ‘ 𝑎 ) = 𝑎 ) ) |
| 84 |
|
simprr |
⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ 𝐹 Isom 𝑅 , 𝑅 ( 𝐴 , 𝐴 ) ) ∧ ( 𝑏 ∈ 𝐴 ∧ ¬ ( 𝐹 ‘ 𝑏 ) = 𝑏 ) ) → ¬ ( 𝐹 ‘ 𝑏 ) = 𝑏 ) |
| 85 |
|
simpl1 |
⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ 𝐹 Isom 𝑅 , 𝑅 ( 𝐴 , 𝐴 ) ) ∧ ( 𝑏 ∈ 𝐴 ∧ ¬ ( 𝐹 ‘ 𝑏 ) = 𝑏 ) ) → 𝑅 We 𝐴 ) |
| 86 |
|
weso |
⊢ ( 𝑅 We 𝐴 → 𝑅 Or 𝐴 ) |
| 87 |
85 86
|
syl |
⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ 𝐹 Isom 𝑅 , 𝑅 ( 𝐴 , 𝐴 ) ) ∧ ( 𝑏 ∈ 𝐴 ∧ ¬ ( 𝐹 ‘ 𝑏 ) = 𝑏 ) ) → 𝑅 Or 𝐴 ) |
| 88 |
|
sotrieq |
⊢ ( ( 𝑅 Or 𝐴 ∧ ( ( 𝐹 ‘ 𝑏 ) ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) ) → ( ( 𝐹 ‘ 𝑏 ) = 𝑏 ↔ ¬ ( ( 𝐹 ‘ 𝑏 ) 𝑅 𝑏 ∨ 𝑏 𝑅 ( 𝐹 ‘ 𝑏 ) ) ) ) |
| 89 |
87 34 33 88
|
syl12anc |
⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ 𝐹 Isom 𝑅 , 𝑅 ( 𝐴 , 𝐴 ) ) ∧ ( 𝑏 ∈ 𝐴 ∧ ¬ ( 𝐹 ‘ 𝑏 ) = 𝑏 ) ) → ( ( 𝐹 ‘ 𝑏 ) = 𝑏 ↔ ¬ ( ( 𝐹 ‘ 𝑏 ) 𝑅 𝑏 ∨ 𝑏 𝑅 ( 𝐹 ‘ 𝑏 ) ) ) ) |
| 90 |
89
|
con2bid |
⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ 𝐹 Isom 𝑅 , 𝑅 ( 𝐴 , 𝐴 ) ) ∧ ( 𝑏 ∈ 𝐴 ∧ ¬ ( 𝐹 ‘ 𝑏 ) = 𝑏 ) ) → ( ( ( 𝐹 ‘ 𝑏 ) 𝑅 𝑏 ∨ 𝑏 𝑅 ( 𝐹 ‘ 𝑏 ) ) ↔ ¬ ( 𝐹 ‘ 𝑏 ) = 𝑏 ) ) |
| 91 |
84 90
|
mpbird |
⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ 𝐹 Isom 𝑅 , 𝑅 ( 𝐴 , 𝐴 ) ) ∧ ( 𝑏 ∈ 𝐴 ∧ ¬ ( 𝐹 ‘ 𝑏 ) = 𝑏 ) ) → ( ( 𝐹 ‘ 𝑏 ) 𝑅 𝑏 ∨ 𝑏 𝑅 ( 𝐹 ‘ 𝑏 ) ) ) |
| 92 |
52 83 91
|
mpjaodan |
⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ 𝐹 Isom 𝑅 , 𝑅 ( 𝐴 , 𝐴 ) ) ∧ ( 𝑏 ∈ 𝐴 ∧ ¬ ( 𝐹 ‘ 𝑏 ) = 𝑏 ) ) → ( ∀ 𝑐 ∈ 𝐴 ( 𝑐 𝑅 𝑏 → ( 𝐹 ‘ 𝑐 ) = 𝑐 ) → ∀ 𝑎 ∈ 𝐴 ( 𝐹 ‘ 𝑎 ) = 𝑎 ) ) |
| 93 |
27 92
|
biimtrid |
⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ 𝐹 Isom 𝑅 , 𝑅 ( 𝐴 , 𝐴 ) ) ∧ ( 𝑏 ∈ 𝐴 ∧ ¬ ( 𝐹 ‘ 𝑏 ) = 𝑏 ) ) → ( ∀ 𝑐 ∈ { 𝑎 ∈ 𝐴 ∣ ¬ ( 𝐹 ‘ 𝑎 ) = 𝑎 } ¬ 𝑐 𝑅 𝑏 → ∀ 𝑎 ∈ 𝐴 ( 𝐹 ‘ 𝑎 ) = 𝑎 ) ) |
| 94 |
93
|
ex |
⊢ ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ 𝐹 Isom 𝑅 , 𝑅 ( 𝐴 , 𝐴 ) ) → ( ( 𝑏 ∈ 𝐴 ∧ ¬ ( 𝐹 ‘ 𝑏 ) = 𝑏 ) → ( ∀ 𝑐 ∈ { 𝑎 ∈ 𝐴 ∣ ¬ ( 𝐹 ‘ 𝑎 ) = 𝑎 } ¬ 𝑐 𝑅 𝑏 → ∀ 𝑎 ∈ 𝐴 ( 𝐹 ‘ 𝑎 ) = 𝑎 ) ) ) |
| 95 |
18 94
|
biimtrid |
⊢ ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ 𝐹 Isom 𝑅 , 𝑅 ( 𝐴 , 𝐴 ) ) → ( 𝑏 ∈ { 𝑎 ∈ 𝐴 ∣ ¬ ( 𝐹 ‘ 𝑎 ) = 𝑎 } → ( ∀ 𝑐 ∈ { 𝑎 ∈ 𝐴 ∣ ¬ ( 𝐹 ‘ 𝑎 ) = 𝑎 } ¬ 𝑐 𝑅 𝑏 → ∀ 𝑎 ∈ 𝐴 ( 𝐹 ‘ 𝑎 ) = 𝑎 ) ) ) |
| 96 |
95
|
rexlimdv |
⊢ ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ 𝐹 Isom 𝑅 , 𝑅 ( 𝐴 , 𝐴 ) ) → ( ∃ 𝑏 ∈ { 𝑎 ∈ 𝐴 ∣ ¬ ( 𝐹 ‘ 𝑎 ) = 𝑎 } ∀ 𝑐 ∈ { 𝑎 ∈ 𝐴 ∣ ¬ ( 𝐹 ‘ 𝑎 ) = 𝑎 } ¬ 𝑐 𝑅 𝑏 → ∀ 𝑎 ∈ 𝐴 ( 𝐹 ‘ 𝑎 ) = 𝑎 ) ) |
| 97 |
13 96
|
syld |
⊢ ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ 𝐹 Isom 𝑅 , 𝑅 ( 𝐴 , 𝐴 ) ) → ( { 𝑎 ∈ 𝐴 ∣ ¬ ( 𝐹 ‘ 𝑎 ) = 𝑎 } ≠ ∅ → ∀ 𝑎 ∈ 𝐴 ( 𝐹 ‘ 𝑎 ) = 𝑎 ) ) |
| 98 |
3 97
|
biimtrrid |
⊢ ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ 𝐹 Isom 𝑅 , 𝑅 ( 𝐴 , 𝐴 ) ) → ( ¬ ∀ 𝑎 ∈ 𝐴 ( 𝐹 ‘ 𝑎 ) = 𝑎 → ∀ 𝑎 ∈ 𝐴 ( 𝐹 ‘ 𝑎 ) = 𝑎 ) ) |
| 99 |
98
|
pm2.18d |
⊢ ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ 𝐹 Isom 𝑅 , 𝑅 ( 𝐴 , 𝐴 ) ) → ∀ 𝑎 ∈ 𝐴 ( 𝐹 ‘ 𝑎 ) = 𝑎 ) |
| 100 |
|
fvresi |
⊢ ( 𝑎 ∈ 𝐴 → ( ( I ↾ 𝐴 ) ‘ 𝑎 ) = 𝑎 ) |
| 101 |
100
|
eqeq2d |
⊢ ( 𝑎 ∈ 𝐴 → ( ( 𝐹 ‘ 𝑎 ) = ( ( I ↾ 𝐴 ) ‘ 𝑎 ) ↔ ( 𝐹 ‘ 𝑎 ) = 𝑎 ) ) |
| 102 |
101
|
biimprd |
⊢ ( 𝑎 ∈ 𝐴 → ( ( 𝐹 ‘ 𝑎 ) = 𝑎 → ( 𝐹 ‘ 𝑎 ) = ( ( I ↾ 𝐴 ) ‘ 𝑎 ) ) ) |
| 103 |
102
|
ralimia |
⊢ ( ∀ 𝑎 ∈ 𝐴 ( 𝐹 ‘ 𝑎 ) = 𝑎 → ∀ 𝑎 ∈ 𝐴 ( 𝐹 ‘ 𝑎 ) = ( ( I ↾ 𝐴 ) ‘ 𝑎 ) ) |
| 104 |
99 103
|
syl |
⊢ ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ 𝐹 Isom 𝑅 , 𝑅 ( 𝐴 , 𝐴 ) ) → ∀ 𝑎 ∈ 𝐴 ( 𝐹 ‘ 𝑎 ) = ( ( I ↾ 𝐴 ) ‘ 𝑎 ) ) |
| 105 |
29
|
3ad2ant3 |
⊢ ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ 𝐹 Isom 𝑅 , 𝑅 ( 𝐴 , 𝐴 ) ) → 𝐹 : 𝐴 –1-1-onto→ 𝐴 ) |
| 106 |
|
f1ofn |
⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐴 → 𝐹 Fn 𝐴 ) |
| 107 |
105 106
|
syl |
⊢ ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ 𝐹 Isom 𝑅 , 𝑅 ( 𝐴 , 𝐴 ) ) → 𝐹 Fn 𝐴 ) |
| 108 |
|
fnresi |
⊢ ( I ↾ 𝐴 ) Fn 𝐴 |
| 109 |
108
|
a1i |
⊢ ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ 𝐹 Isom 𝑅 , 𝑅 ( 𝐴 , 𝐴 ) ) → ( I ↾ 𝐴 ) Fn 𝐴 ) |
| 110 |
|
eqfnfv |
⊢ ( ( 𝐹 Fn 𝐴 ∧ ( I ↾ 𝐴 ) Fn 𝐴 ) → ( 𝐹 = ( I ↾ 𝐴 ) ↔ ∀ 𝑎 ∈ 𝐴 ( 𝐹 ‘ 𝑎 ) = ( ( I ↾ 𝐴 ) ‘ 𝑎 ) ) ) |
| 111 |
107 109 110
|
syl2anc |
⊢ ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ 𝐹 Isom 𝑅 , 𝑅 ( 𝐴 , 𝐴 ) ) → ( 𝐹 = ( I ↾ 𝐴 ) ↔ ∀ 𝑎 ∈ 𝐴 ( 𝐹 ‘ 𝑎 ) = ( ( I ↾ 𝐴 ) ‘ 𝑎 ) ) ) |
| 112 |
104 111
|
mpbird |
⊢ ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ 𝐹 Isom 𝑅 , 𝑅 ( 𝐴 , 𝐴 ) ) → 𝐹 = ( I ↾ 𝐴 ) ) |