| Step |
Hyp |
Ref |
Expression |
| 1 |
|
wemapwe.t |
⊢ 𝑇 = { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑧 ∈ 𝐴 ( ( 𝑥 ‘ 𝑧 ) 𝑆 ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐴 ( 𝑧 𝑅 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) } |
| 2 |
|
wemapwe.u |
⊢ 𝑈 = { 𝑥 ∈ ( 𝐵 ↑m 𝐴 ) ∣ 𝑥 finSupp 𝑍 } |
| 3 |
|
wemapwe.2 |
⊢ ( 𝜑 → 𝑅 We 𝐴 ) |
| 4 |
|
wemapwe.3 |
⊢ ( 𝜑 → 𝑆 We 𝐵 ) |
| 5 |
|
wemapwe.4 |
⊢ ( 𝜑 → 𝐵 ≠ ∅ ) |
| 6 |
|
wemapwe.5 |
⊢ 𝐹 = OrdIso ( 𝑅 , 𝐴 ) |
| 7 |
|
wemapwe.6 |
⊢ 𝐺 = OrdIso ( 𝑆 , 𝐵 ) |
| 8 |
|
wemapwe.7 |
⊢ 𝑍 = ( 𝐺 ‘ ∅ ) |
| 9 |
|
eqid |
⊢ { 𝑥 ∈ ( dom 𝐺 ↑m dom 𝐹 ) ∣ 𝑥 finSupp ( ◡ 𝐺 ‘ 𝑍 ) } = { 𝑥 ∈ ( dom 𝐺 ↑m dom 𝐹 ) ∣ 𝑥 finSupp ( ◡ 𝐺 ‘ 𝑍 ) } |
| 10 |
|
eqid |
⊢ ( ◡ 𝐺 ‘ 𝑍 ) = ( ◡ 𝐺 ‘ 𝑍 ) |
| 11 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) → 𝐴 ∈ V ) |
| 12 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) → 𝑅 We 𝐴 ) |
| 13 |
6
|
oiiso |
⊢ ( ( 𝐴 ∈ V ∧ 𝑅 We 𝐴 ) → 𝐹 Isom E , 𝑅 ( dom 𝐹 , 𝐴 ) ) |
| 14 |
11 12 13
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) → 𝐹 Isom E , 𝑅 ( dom 𝐹 , 𝐴 ) ) |
| 15 |
|
isof1o |
⊢ ( 𝐹 Isom E , 𝑅 ( dom 𝐹 , 𝐴 ) → 𝐹 : dom 𝐹 –1-1-onto→ 𝐴 ) |
| 16 |
14 15
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) → 𝐹 : dom 𝐹 –1-1-onto→ 𝐴 ) |
| 17 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) → 𝐵 ∈ V ) |
| 18 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) → 𝑆 We 𝐵 ) |
| 19 |
7
|
oiiso |
⊢ ( ( 𝐵 ∈ V ∧ 𝑆 We 𝐵 ) → 𝐺 Isom E , 𝑆 ( dom 𝐺 , 𝐵 ) ) |
| 20 |
17 18 19
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) → 𝐺 Isom E , 𝑆 ( dom 𝐺 , 𝐵 ) ) |
| 21 |
|
isof1o |
⊢ ( 𝐺 Isom E , 𝑆 ( dom 𝐺 , 𝐵 ) → 𝐺 : dom 𝐺 –1-1-onto→ 𝐵 ) |
| 22 |
|
f1ocnv |
⊢ ( 𝐺 : dom 𝐺 –1-1-onto→ 𝐵 → ◡ 𝐺 : 𝐵 –1-1-onto→ dom 𝐺 ) |
| 23 |
20 21 22
|
3syl |
⊢ ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) → ◡ 𝐺 : 𝐵 –1-1-onto→ dom 𝐺 ) |
| 24 |
6
|
oiexg |
⊢ ( 𝐴 ∈ V → 𝐹 ∈ V ) |
| 25 |
24
|
ad2antll |
⊢ ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) → 𝐹 ∈ V ) |
| 26 |
25
|
dmexd |
⊢ ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) → dom 𝐹 ∈ V ) |
| 27 |
7
|
oiexg |
⊢ ( 𝐵 ∈ V → 𝐺 ∈ V ) |
| 28 |
27
|
ad2antrl |
⊢ ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) → 𝐺 ∈ V ) |
| 29 |
28
|
dmexd |
⊢ ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) → dom 𝐺 ∈ V ) |
| 30 |
20 21
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) → 𝐺 : dom 𝐺 –1-1-onto→ 𝐵 ) |
| 31 |
|
f1ofo |
⊢ ( 𝐺 : dom 𝐺 –1-1-onto→ 𝐵 → 𝐺 : dom 𝐺 –onto→ 𝐵 ) |
| 32 |
|
forn |
⊢ ( 𝐺 : dom 𝐺 –onto→ 𝐵 → ran 𝐺 = 𝐵 ) |
| 33 |
30 31 32
|
3syl |
⊢ ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) → ran 𝐺 = 𝐵 ) |
| 34 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) → 𝐵 ≠ ∅ ) |
| 35 |
33 34
|
eqnetrd |
⊢ ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) → ran 𝐺 ≠ ∅ ) |
| 36 |
|
dm0rn0 |
⊢ ( dom 𝐺 = ∅ ↔ ran 𝐺 = ∅ ) |
| 37 |
36
|
necon3bii |
⊢ ( dom 𝐺 ≠ ∅ ↔ ran 𝐺 ≠ ∅ ) |
| 38 |
35 37
|
sylibr |
⊢ ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) → dom 𝐺 ≠ ∅ ) |
| 39 |
7
|
oicl |
⊢ Ord dom 𝐺 |
| 40 |
|
ord0eln0 |
⊢ ( Ord dom 𝐺 → ( ∅ ∈ dom 𝐺 ↔ dom 𝐺 ≠ ∅ ) ) |
| 41 |
39 40
|
ax-mp |
⊢ ( ∅ ∈ dom 𝐺 ↔ dom 𝐺 ≠ ∅ ) |
| 42 |
38 41
|
sylibr |
⊢ ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) → ∅ ∈ dom 𝐺 ) |
| 43 |
7
|
oif |
⊢ 𝐺 : dom 𝐺 ⟶ 𝐵 |
| 44 |
43
|
ffvelcdmi |
⊢ ( ∅ ∈ dom 𝐺 → ( 𝐺 ‘ ∅ ) ∈ 𝐵 ) |
| 45 |
42 44
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) → ( 𝐺 ‘ ∅ ) ∈ 𝐵 ) |
| 46 |
8 45
|
eqeltrid |
⊢ ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) → 𝑍 ∈ 𝐵 ) |
| 47 |
2 9 10 16 23 11 17 26 29 46
|
mapfien |
⊢ ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) → ( 𝑓 ∈ 𝑈 ↦ ( ◡ 𝐺 ∘ ( 𝑓 ∘ 𝐹 ) ) ) : 𝑈 –1-1-onto→ { 𝑥 ∈ ( dom 𝐺 ↑m dom 𝐹 ) ∣ 𝑥 finSupp ( ◡ 𝐺 ‘ 𝑍 ) } ) |
| 48 |
|
eqid |
⊢ { 𝑥 ∈ ( dom 𝐺 ↑m dom 𝐹 ) ∣ 𝑥 finSupp ∅ } = { 𝑥 ∈ ( dom 𝐺 ↑m dom 𝐹 ) ∣ 𝑥 finSupp ∅ } |
| 49 |
7
|
oion |
⊢ ( 𝐵 ∈ V → dom 𝐺 ∈ On ) |
| 50 |
49
|
ad2antrl |
⊢ ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) → dom 𝐺 ∈ On ) |
| 51 |
6
|
oion |
⊢ ( 𝐴 ∈ V → dom 𝐹 ∈ On ) |
| 52 |
51
|
ad2antll |
⊢ ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) → dom 𝐹 ∈ On ) |
| 53 |
48 50 52
|
cantnfdm |
⊢ ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) → dom ( dom 𝐺 CNF dom 𝐹 ) = { 𝑥 ∈ ( dom 𝐺 ↑m dom 𝐹 ) ∣ 𝑥 finSupp ∅ } ) |
| 54 |
8
|
fveq2i |
⊢ ( ◡ 𝐺 ‘ 𝑍 ) = ( ◡ 𝐺 ‘ ( 𝐺 ‘ ∅ ) ) |
| 55 |
|
f1ocnvfv1 |
⊢ ( ( 𝐺 : dom 𝐺 –1-1-onto→ 𝐵 ∧ ∅ ∈ dom 𝐺 ) → ( ◡ 𝐺 ‘ ( 𝐺 ‘ ∅ ) ) = ∅ ) |
| 56 |
30 42 55
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) → ( ◡ 𝐺 ‘ ( 𝐺 ‘ ∅ ) ) = ∅ ) |
| 57 |
54 56
|
eqtrid |
⊢ ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) → ( ◡ 𝐺 ‘ 𝑍 ) = ∅ ) |
| 58 |
57
|
breq2d |
⊢ ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) → ( 𝑥 finSupp ( ◡ 𝐺 ‘ 𝑍 ) ↔ 𝑥 finSupp ∅ ) ) |
| 59 |
58
|
rabbidv |
⊢ ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) → { 𝑥 ∈ ( dom 𝐺 ↑m dom 𝐹 ) ∣ 𝑥 finSupp ( ◡ 𝐺 ‘ 𝑍 ) } = { 𝑥 ∈ ( dom 𝐺 ↑m dom 𝐹 ) ∣ 𝑥 finSupp ∅ } ) |
| 60 |
53 59
|
eqtr4d |
⊢ ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) → dom ( dom 𝐺 CNF dom 𝐹 ) = { 𝑥 ∈ ( dom 𝐺 ↑m dom 𝐹 ) ∣ 𝑥 finSupp ( ◡ 𝐺 ‘ 𝑍 ) } ) |
| 61 |
60
|
f1oeq3d |
⊢ ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) → ( ( 𝑓 ∈ 𝑈 ↦ ( ◡ 𝐺 ∘ ( 𝑓 ∘ 𝐹 ) ) ) : 𝑈 –1-1-onto→ dom ( dom 𝐺 CNF dom 𝐹 ) ↔ ( 𝑓 ∈ 𝑈 ↦ ( ◡ 𝐺 ∘ ( 𝑓 ∘ 𝐹 ) ) ) : 𝑈 –1-1-onto→ { 𝑥 ∈ ( dom 𝐺 ↑m dom 𝐹 ) ∣ 𝑥 finSupp ( ◡ 𝐺 ‘ 𝑍 ) } ) ) |
| 62 |
47 61
|
mpbird |
⊢ ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) → ( 𝑓 ∈ 𝑈 ↦ ( ◡ 𝐺 ∘ ( 𝑓 ∘ 𝐹 ) ) ) : 𝑈 –1-1-onto→ dom ( dom 𝐺 CNF dom 𝐹 ) ) |
| 63 |
|
eqid |
⊢ dom ( dom 𝐺 CNF dom 𝐹 ) = dom ( dom 𝐺 CNF dom 𝐹 ) |
| 64 |
|
eqid |
⊢ { 〈 𝑎 , 𝑏 〉 ∣ ∃ 𝑐 ∈ dom 𝐹 ( ( 𝑎 ‘ 𝑐 ) ∈ ( 𝑏 ‘ 𝑐 ) ∧ ∀ 𝑑 ∈ dom 𝐹 ( 𝑐 ∈ 𝑑 → ( 𝑎 ‘ 𝑑 ) = ( 𝑏 ‘ 𝑑 ) ) ) } = { 〈 𝑎 , 𝑏 〉 ∣ ∃ 𝑐 ∈ dom 𝐹 ( ( 𝑎 ‘ 𝑐 ) ∈ ( 𝑏 ‘ 𝑐 ) ∧ ∀ 𝑑 ∈ dom 𝐹 ( 𝑐 ∈ 𝑑 → ( 𝑎 ‘ 𝑑 ) = ( 𝑏 ‘ 𝑑 ) ) ) } |
| 65 |
63 50 52 64
|
oemapwe |
⊢ ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) → ( { 〈 𝑎 , 𝑏 〉 ∣ ∃ 𝑐 ∈ dom 𝐹 ( ( 𝑎 ‘ 𝑐 ) ∈ ( 𝑏 ‘ 𝑐 ) ∧ ∀ 𝑑 ∈ dom 𝐹 ( 𝑐 ∈ 𝑑 → ( 𝑎 ‘ 𝑑 ) = ( 𝑏 ‘ 𝑑 ) ) ) } We dom ( dom 𝐺 CNF dom 𝐹 ) ∧ dom OrdIso ( { 〈 𝑎 , 𝑏 〉 ∣ ∃ 𝑐 ∈ dom 𝐹 ( ( 𝑎 ‘ 𝑐 ) ∈ ( 𝑏 ‘ 𝑐 ) ∧ ∀ 𝑑 ∈ dom 𝐹 ( 𝑐 ∈ 𝑑 → ( 𝑎 ‘ 𝑑 ) = ( 𝑏 ‘ 𝑑 ) ) ) } , dom ( dom 𝐺 CNF dom 𝐹 ) ) = ( dom 𝐺 ↑o dom 𝐹 ) ) ) |
| 66 |
65
|
simpld |
⊢ ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) → { 〈 𝑎 , 𝑏 〉 ∣ ∃ 𝑐 ∈ dom 𝐹 ( ( 𝑎 ‘ 𝑐 ) ∈ ( 𝑏 ‘ 𝑐 ) ∧ ∀ 𝑑 ∈ dom 𝐹 ( 𝑐 ∈ 𝑑 → ( 𝑎 ‘ 𝑑 ) = ( 𝑏 ‘ 𝑑 ) ) ) } We dom ( dom 𝐺 CNF dom 𝐹 ) ) |
| 67 |
|
eqid |
⊢ { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑓 ∈ 𝑈 ↦ ( ◡ 𝐺 ∘ ( 𝑓 ∘ 𝐹 ) ) ) ‘ 𝑥 ) { 〈 𝑎 , 𝑏 〉 ∣ ∃ 𝑐 ∈ dom 𝐹 ( ( 𝑎 ‘ 𝑐 ) ∈ ( 𝑏 ‘ 𝑐 ) ∧ ∀ 𝑑 ∈ dom 𝐹 ( 𝑐 ∈ 𝑑 → ( 𝑎 ‘ 𝑑 ) = ( 𝑏 ‘ 𝑑 ) ) ) } ( ( 𝑓 ∈ 𝑈 ↦ ( ◡ 𝐺 ∘ ( 𝑓 ∘ 𝐹 ) ) ) ‘ 𝑦 ) } = { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑓 ∈ 𝑈 ↦ ( ◡ 𝐺 ∘ ( 𝑓 ∘ 𝐹 ) ) ) ‘ 𝑥 ) { 〈 𝑎 , 𝑏 〉 ∣ ∃ 𝑐 ∈ dom 𝐹 ( ( 𝑎 ‘ 𝑐 ) ∈ ( 𝑏 ‘ 𝑐 ) ∧ ∀ 𝑑 ∈ dom 𝐹 ( 𝑐 ∈ 𝑑 → ( 𝑎 ‘ 𝑑 ) = ( 𝑏 ‘ 𝑑 ) ) ) } ( ( 𝑓 ∈ 𝑈 ↦ ( ◡ 𝐺 ∘ ( 𝑓 ∘ 𝐹 ) ) ) ‘ 𝑦 ) } |
| 68 |
67
|
f1owe |
⊢ ( ( 𝑓 ∈ 𝑈 ↦ ( ◡ 𝐺 ∘ ( 𝑓 ∘ 𝐹 ) ) ) : 𝑈 –1-1-onto→ dom ( dom 𝐺 CNF dom 𝐹 ) → ( { 〈 𝑎 , 𝑏 〉 ∣ ∃ 𝑐 ∈ dom 𝐹 ( ( 𝑎 ‘ 𝑐 ) ∈ ( 𝑏 ‘ 𝑐 ) ∧ ∀ 𝑑 ∈ dom 𝐹 ( 𝑐 ∈ 𝑑 → ( 𝑎 ‘ 𝑑 ) = ( 𝑏 ‘ 𝑑 ) ) ) } We dom ( dom 𝐺 CNF dom 𝐹 ) → { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑓 ∈ 𝑈 ↦ ( ◡ 𝐺 ∘ ( 𝑓 ∘ 𝐹 ) ) ) ‘ 𝑥 ) { 〈 𝑎 , 𝑏 〉 ∣ ∃ 𝑐 ∈ dom 𝐹 ( ( 𝑎 ‘ 𝑐 ) ∈ ( 𝑏 ‘ 𝑐 ) ∧ ∀ 𝑑 ∈ dom 𝐹 ( 𝑐 ∈ 𝑑 → ( 𝑎 ‘ 𝑑 ) = ( 𝑏 ‘ 𝑑 ) ) ) } ( ( 𝑓 ∈ 𝑈 ↦ ( ◡ 𝐺 ∘ ( 𝑓 ∘ 𝐹 ) ) ) ‘ 𝑦 ) } We 𝑈 ) ) |
| 69 |
62 66 68
|
sylc |
⊢ ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) → { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑓 ∈ 𝑈 ↦ ( ◡ 𝐺 ∘ ( 𝑓 ∘ 𝐹 ) ) ) ‘ 𝑥 ) { 〈 𝑎 , 𝑏 〉 ∣ ∃ 𝑐 ∈ dom 𝐹 ( ( 𝑎 ‘ 𝑐 ) ∈ ( 𝑏 ‘ 𝑐 ) ∧ ∀ 𝑑 ∈ dom 𝐹 ( 𝑐 ∈ 𝑑 → ( 𝑎 ‘ 𝑑 ) = ( 𝑏 ‘ 𝑑 ) ) ) } ( ( 𝑓 ∈ 𝑈 ↦ ( ◡ 𝐺 ∘ ( 𝑓 ∘ 𝐹 ) ) ) ‘ 𝑦 ) } We 𝑈 ) |
| 70 |
|
weinxp |
⊢ ( { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑓 ∈ 𝑈 ↦ ( ◡ 𝐺 ∘ ( 𝑓 ∘ 𝐹 ) ) ) ‘ 𝑥 ) { 〈 𝑎 , 𝑏 〉 ∣ ∃ 𝑐 ∈ dom 𝐹 ( ( 𝑎 ‘ 𝑐 ) ∈ ( 𝑏 ‘ 𝑐 ) ∧ ∀ 𝑑 ∈ dom 𝐹 ( 𝑐 ∈ 𝑑 → ( 𝑎 ‘ 𝑑 ) = ( 𝑏 ‘ 𝑑 ) ) ) } ( ( 𝑓 ∈ 𝑈 ↦ ( ◡ 𝐺 ∘ ( 𝑓 ∘ 𝐹 ) ) ) ‘ 𝑦 ) } We 𝑈 ↔ ( { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑓 ∈ 𝑈 ↦ ( ◡ 𝐺 ∘ ( 𝑓 ∘ 𝐹 ) ) ) ‘ 𝑥 ) { 〈 𝑎 , 𝑏 〉 ∣ ∃ 𝑐 ∈ dom 𝐹 ( ( 𝑎 ‘ 𝑐 ) ∈ ( 𝑏 ‘ 𝑐 ) ∧ ∀ 𝑑 ∈ dom 𝐹 ( 𝑐 ∈ 𝑑 → ( 𝑎 ‘ 𝑑 ) = ( 𝑏 ‘ 𝑑 ) ) ) } ( ( 𝑓 ∈ 𝑈 ↦ ( ◡ 𝐺 ∘ ( 𝑓 ∘ 𝐹 ) ) ) ‘ 𝑦 ) } ∩ ( 𝑈 × 𝑈 ) ) We 𝑈 ) |
| 71 |
69 70
|
sylib |
⊢ ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) → ( { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑓 ∈ 𝑈 ↦ ( ◡ 𝐺 ∘ ( 𝑓 ∘ 𝐹 ) ) ) ‘ 𝑥 ) { 〈 𝑎 , 𝑏 〉 ∣ ∃ 𝑐 ∈ dom 𝐹 ( ( 𝑎 ‘ 𝑐 ) ∈ ( 𝑏 ‘ 𝑐 ) ∧ ∀ 𝑑 ∈ dom 𝐹 ( 𝑐 ∈ 𝑑 → ( 𝑎 ‘ 𝑑 ) = ( 𝑏 ‘ 𝑑 ) ) ) } ( ( 𝑓 ∈ 𝑈 ↦ ( ◡ 𝐺 ∘ ( 𝑓 ∘ 𝐹 ) ) ) ‘ 𝑦 ) } ∩ ( 𝑈 × 𝑈 ) ) We 𝑈 ) |
| 72 |
16
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) → 𝐹 : dom 𝐹 –1-1-onto→ 𝐴 ) |
| 73 |
|
f1ofn |
⊢ ( 𝐹 : dom 𝐹 –1-1-onto→ 𝐴 → 𝐹 Fn dom 𝐹 ) |
| 74 |
|
fveq2 |
⊢ ( 𝑧 = ( 𝐹 ‘ 𝑐 ) → ( 𝑥 ‘ 𝑧 ) = ( 𝑥 ‘ ( 𝐹 ‘ 𝑐 ) ) ) |
| 75 |
|
fveq2 |
⊢ ( 𝑧 = ( 𝐹 ‘ 𝑐 ) → ( 𝑦 ‘ 𝑧 ) = ( 𝑦 ‘ ( 𝐹 ‘ 𝑐 ) ) ) |
| 76 |
74 75
|
breq12d |
⊢ ( 𝑧 = ( 𝐹 ‘ 𝑐 ) → ( ( 𝑥 ‘ 𝑧 ) 𝑆 ( 𝑦 ‘ 𝑧 ) ↔ ( 𝑥 ‘ ( 𝐹 ‘ 𝑐 ) ) 𝑆 ( 𝑦 ‘ ( 𝐹 ‘ 𝑐 ) ) ) ) |
| 77 |
|
breq1 |
⊢ ( 𝑧 = ( 𝐹 ‘ 𝑐 ) → ( 𝑧 𝑅 𝑤 ↔ ( 𝐹 ‘ 𝑐 ) 𝑅 𝑤 ) ) |
| 78 |
77
|
imbi1d |
⊢ ( 𝑧 = ( 𝐹 ‘ 𝑐 ) → ( ( 𝑧 𝑅 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ↔ ( ( 𝐹 ‘ 𝑐 ) 𝑅 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ) |
| 79 |
78
|
ralbidv |
⊢ ( 𝑧 = ( 𝐹 ‘ 𝑐 ) → ( ∀ 𝑤 ∈ 𝐴 ( 𝑧 𝑅 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ↔ ∀ 𝑤 ∈ 𝐴 ( ( 𝐹 ‘ 𝑐 ) 𝑅 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ) |
| 80 |
76 79
|
anbi12d |
⊢ ( 𝑧 = ( 𝐹 ‘ 𝑐 ) → ( ( ( 𝑥 ‘ 𝑧 ) 𝑆 ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐴 ( 𝑧 𝑅 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ↔ ( ( 𝑥 ‘ ( 𝐹 ‘ 𝑐 ) ) 𝑆 ( 𝑦 ‘ ( 𝐹 ‘ 𝑐 ) ) ∧ ∀ 𝑤 ∈ 𝐴 ( ( 𝐹 ‘ 𝑐 ) 𝑅 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ) ) |
| 81 |
80
|
rexrn |
⊢ ( 𝐹 Fn dom 𝐹 → ( ∃ 𝑧 ∈ ran 𝐹 ( ( 𝑥 ‘ 𝑧 ) 𝑆 ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐴 ( 𝑧 𝑅 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ↔ ∃ 𝑐 ∈ dom 𝐹 ( ( 𝑥 ‘ ( 𝐹 ‘ 𝑐 ) ) 𝑆 ( 𝑦 ‘ ( 𝐹 ‘ 𝑐 ) ) ∧ ∀ 𝑤 ∈ 𝐴 ( ( 𝐹 ‘ 𝑐 ) 𝑅 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ) ) |
| 82 |
72 73 81
|
3syl |
⊢ ( ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) → ( ∃ 𝑧 ∈ ran 𝐹 ( ( 𝑥 ‘ 𝑧 ) 𝑆 ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐴 ( 𝑧 𝑅 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ↔ ∃ 𝑐 ∈ dom 𝐹 ( ( 𝑥 ‘ ( 𝐹 ‘ 𝑐 ) ) 𝑆 ( 𝑦 ‘ ( 𝐹 ‘ 𝑐 ) ) ∧ ∀ 𝑤 ∈ 𝐴 ( ( 𝐹 ‘ 𝑐 ) 𝑅 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ) ) |
| 83 |
|
f1ofo |
⊢ ( 𝐹 : dom 𝐹 –1-1-onto→ 𝐴 → 𝐹 : dom 𝐹 –onto→ 𝐴 ) |
| 84 |
|
forn |
⊢ ( 𝐹 : dom 𝐹 –onto→ 𝐴 → ran 𝐹 = 𝐴 ) |
| 85 |
72 83 84
|
3syl |
⊢ ( ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) → ran 𝐹 = 𝐴 ) |
| 86 |
85
|
rexeqdv |
⊢ ( ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) → ( ∃ 𝑧 ∈ ran 𝐹 ( ( 𝑥 ‘ 𝑧 ) 𝑆 ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐴 ( 𝑧 𝑅 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ↔ ∃ 𝑧 ∈ 𝐴 ( ( 𝑥 ‘ 𝑧 ) 𝑆 ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐴 ( 𝑧 𝑅 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ) ) |
| 87 |
28
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) → 𝐺 ∈ V ) |
| 88 |
|
cnvexg |
⊢ ( 𝐺 ∈ V → ◡ 𝐺 ∈ V ) |
| 89 |
87 88
|
syl |
⊢ ( ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) → ◡ 𝐺 ∈ V ) |
| 90 |
|
vex |
⊢ 𝑥 ∈ V |
| 91 |
25
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) → 𝐹 ∈ V ) |
| 92 |
|
coexg |
⊢ ( ( 𝑥 ∈ V ∧ 𝐹 ∈ V ) → ( 𝑥 ∘ 𝐹 ) ∈ V ) |
| 93 |
90 91 92
|
sylancr |
⊢ ( ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) → ( 𝑥 ∘ 𝐹 ) ∈ V ) |
| 94 |
|
coexg |
⊢ ( ( ◡ 𝐺 ∈ V ∧ ( 𝑥 ∘ 𝐹 ) ∈ V ) → ( ◡ 𝐺 ∘ ( 𝑥 ∘ 𝐹 ) ) ∈ V ) |
| 95 |
89 93 94
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) → ( ◡ 𝐺 ∘ ( 𝑥 ∘ 𝐹 ) ) ∈ V ) |
| 96 |
|
vex |
⊢ 𝑦 ∈ V |
| 97 |
|
coexg |
⊢ ( ( 𝑦 ∈ V ∧ 𝐹 ∈ V ) → ( 𝑦 ∘ 𝐹 ) ∈ V ) |
| 98 |
96 91 97
|
sylancr |
⊢ ( ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) → ( 𝑦 ∘ 𝐹 ) ∈ V ) |
| 99 |
|
coexg |
⊢ ( ( ◡ 𝐺 ∈ V ∧ ( 𝑦 ∘ 𝐹 ) ∈ V ) → ( ◡ 𝐺 ∘ ( 𝑦 ∘ 𝐹 ) ) ∈ V ) |
| 100 |
89 98 99
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) → ( ◡ 𝐺 ∘ ( 𝑦 ∘ 𝐹 ) ) ∈ V ) |
| 101 |
|
fveq1 |
⊢ ( 𝑎 = ( ◡ 𝐺 ∘ ( 𝑥 ∘ 𝐹 ) ) → ( 𝑎 ‘ 𝑐 ) = ( ( ◡ 𝐺 ∘ ( 𝑥 ∘ 𝐹 ) ) ‘ 𝑐 ) ) |
| 102 |
|
fveq1 |
⊢ ( 𝑏 = ( ◡ 𝐺 ∘ ( 𝑦 ∘ 𝐹 ) ) → ( 𝑏 ‘ 𝑐 ) = ( ( ◡ 𝐺 ∘ ( 𝑦 ∘ 𝐹 ) ) ‘ 𝑐 ) ) |
| 103 |
|
eleq12 |
⊢ ( ( ( 𝑎 ‘ 𝑐 ) = ( ( ◡ 𝐺 ∘ ( 𝑥 ∘ 𝐹 ) ) ‘ 𝑐 ) ∧ ( 𝑏 ‘ 𝑐 ) = ( ( ◡ 𝐺 ∘ ( 𝑦 ∘ 𝐹 ) ) ‘ 𝑐 ) ) → ( ( 𝑎 ‘ 𝑐 ) ∈ ( 𝑏 ‘ 𝑐 ) ↔ ( ( ◡ 𝐺 ∘ ( 𝑥 ∘ 𝐹 ) ) ‘ 𝑐 ) ∈ ( ( ◡ 𝐺 ∘ ( 𝑦 ∘ 𝐹 ) ) ‘ 𝑐 ) ) ) |
| 104 |
101 102 103
|
syl2an |
⊢ ( ( 𝑎 = ( ◡ 𝐺 ∘ ( 𝑥 ∘ 𝐹 ) ) ∧ 𝑏 = ( ◡ 𝐺 ∘ ( 𝑦 ∘ 𝐹 ) ) ) → ( ( 𝑎 ‘ 𝑐 ) ∈ ( 𝑏 ‘ 𝑐 ) ↔ ( ( ◡ 𝐺 ∘ ( 𝑥 ∘ 𝐹 ) ) ‘ 𝑐 ) ∈ ( ( ◡ 𝐺 ∘ ( 𝑦 ∘ 𝐹 ) ) ‘ 𝑐 ) ) ) |
| 105 |
|
fveq1 |
⊢ ( 𝑎 = ( ◡ 𝐺 ∘ ( 𝑥 ∘ 𝐹 ) ) → ( 𝑎 ‘ 𝑑 ) = ( ( ◡ 𝐺 ∘ ( 𝑥 ∘ 𝐹 ) ) ‘ 𝑑 ) ) |
| 106 |
|
fveq1 |
⊢ ( 𝑏 = ( ◡ 𝐺 ∘ ( 𝑦 ∘ 𝐹 ) ) → ( 𝑏 ‘ 𝑑 ) = ( ( ◡ 𝐺 ∘ ( 𝑦 ∘ 𝐹 ) ) ‘ 𝑑 ) ) |
| 107 |
105 106
|
eqeqan12d |
⊢ ( ( 𝑎 = ( ◡ 𝐺 ∘ ( 𝑥 ∘ 𝐹 ) ) ∧ 𝑏 = ( ◡ 𝐺 ∘ ( 𝑦 ∘ 𝐹 ) ) ) → ( ( 𝑎 ‘ 𝑑 ) = ( 𝑏 ‘ 𝑑 ) ↔ ( ( ◡ 𝐺 ∘ ( 𝑥 ∘ 𝐹 ) ) ‘ 𝑑 ) = ( ( ◡ 𝐺 ∘ ( 𝑦 ∘ 𝐹 ) ) ‘ 𝑑 ) ) ) |
| 108 |
107
|
imbi2d |
⊢ ( ( 𝑎 = ( ◡ 𝐺 ∘ ( 𝑥 ∘ 𝐹 ) ) ∧ 𝑏 = ( ◡ 𝐺 ∘ ( 𝑦 ∘ 𝐹 ) ) ) → ( ( 𝑐 ∈ 𝑑 → ( 𝑎 ‘ 𝑑 ) = ( 𝑏 ‘ 𝑑 ) ) ↔ ( 𝑐 ∈ 𝑑 → ( ( ◡ 𝐺 ∘ ( 𝑥 ∘ 𝐹 ) ) ‘ 𝑑 ) = ( ( ◡ 𝐺 ∘ ( 𝑦 ∘ 𝐹 ) ) ‘ 𝑑 ) ) ) ) |
| 109 |
108
|
ralbidv |
⊢ ( ( 𝑎 = ( ◡ 𝐺 ∘ ( 𝑥 ∘ 𝐹 ) ) ∧ 𝑏 = ( ◡ 𝐺 ∘ ( 𝑦 ∘ 𝐹 ) ) ) → ( ∀ 𝑑 ∈ dom 𝐹 ( 𝑐 ∈ 𝑑 → ( 𝑎 ‘ 𝑑 ) = ( 𝑏 ‘ 𝑑 ) ) ↔ ∀ 𝑑 ∈ dom 𝐹 ( 𝑐 ∈ 𝑑 → ( ( ◡ 𝐺 ∘ ( 𝑥 ∘ 𝐹 ) ) ‘ 𝑑 ) = ( ( ◡ 𝐺 ∘ ( 𝑦 ∘ 𝐹 ) ) ‘ 𝑑 ) ) ) ) |
| 110 |
104 109
|
anbi12d |
⊢ ( ( 𝑎 = ( ◡ 𝐺 ∘ ( 𝑥 ∘ 𝐹 ) ) ∧ 𝑏 = ( ◡ 𝐺 ∘ ( 𝑦 ∘ 𝐹 ) ) ) → ( ( ( 𝑎 ‘ 𝑐 ) ∈ ( 𝑏 ‘ 𝑐 ) ∧ ∀ 𝑑 ∈ dom 𝐹 ( 𝑐 ∈ 𝑑 → ( 𝑎 ‘ 𝑑 ) = ( 𝑏 ‘ 𝑑 ) ) ) ↔ ( ( ( ◡ 𝐺 ∘ ( 𝑥 ∘ 𝐹 ) ) ‘ 𝑐 ) ∈ ( ( ◡ 𝐺 ∘ ( 𝑦 ∘ 𝐹 ) ) ‘ 𝑐 ) ∧ ∀ 𝑑 ∈ dom 𝐹 ( 𝑐 ∈ 𝑑 → ( ( ◡ 𝐺 ∘ ( 𝑥 ∘ 𝐹 ) ) ‘ 𝑑 ) = ( ( ◡ 𝐺 ∘ ( 𝑦 ∘ 𝐹 ) ) ‘ 𝑑 ) ) ) ) ) |
| 111 |
110
|
rexbidv |
⊢ ( ( 𝑎 = ( ◡ 𝐺 ∘ ( 𝑥 ∘ 𝐹 ) ) ∧ 𝑏 = ( ◡ 𝐺 ∘ ( 𝑦 ∘ 𝐹 ) ) ) → ( ∃ 𝑐 ∈ dom 𝐹 ( ( 𝑎 ‘ 𝑐 ) ∈ ( 𝑏 ‘ 𝑐 ) ∧ ∀ 𝑑 ∈ dom 𝐹 ( 𝑐 ∈ 𝑑 → ( 𝑎 ‘ 𝑑 ) = ( 𝑏 ‘ 𝑑 ) ) ) ↔ ∃ 𝑐 ∈ dom 𝐹 ( ( ( ◡ 𝐺 ∘ ( 𝑥 ∘ 𝐹 ) ) ‘ 𝑐 ) ∈ ( ( ◡ 𝐺 ∘ ( 𝑦 ∘ 𝐹 ) ) ‘ 𝑐 ) ∧ ∀ 𝑑 ∈ dom 𝐹 ( 𝑐 ∈ 𝑑 → ( ( ◡ 𝐺 ∘ ( 𝑥 ∘ 𝐹 ) ) ‘ 𝑑 ) = ( ( ◡ 𝐺 ∘ ( 𝑦 ∘ 𝐹 ) ) ‘ 𝑑 ) ) ) ) ) |
| 112 |
111 64
|
brabga |
⊢ ( ( ( ◡ 𝐺 ∘ ( 𝑥 ∘ 𝐹 ) ) ∈ V ∧ ( ◡ 𝐺 ∘ ( 𝑦 ∘ 𝐹 ) ) ∈ V ) → ( ( ◡ 𝐺 ∘ ( 𝑥 ∘ 𝐹 ) ) { 〈 𝑎 , 𝑏 〉 ∣ ∃ 𝑐 ∈ dom 𝐹 ( ( 𝑎 ‘ 𝑐 ) ∈ ( 𝑏 ‘ 𝑐 ) ∧ ∀ 𝑑 ∈ dom 𝐹 ( 𝑐 ∈ 𝑑 → ( 𝑎 ‘ 𝑑 ) = ( 𝑏 ‘ 𝑑 ) ) ) } ( ◡ 𝐺 ∘ ( 𝑦 ∘ 𝐹 ) ) ↔ ∃ 𝑐 ∈ dom 𝐹 ( ( ( ◡ 𝐺 ∘ ( 𝑥 ∘ 𝐹 ) ) ‘ 𝑐 ) ∈ ( ( ◡ 𝐺 ∘ ( 𝑦 ∘ 𝐹 ) ) ‘ 𝑐 ) ∧ ∀ 𝑑 ∈ dom 𝐹 ( 𝑐 ∈ 𝑑 → ( ( ◡ 𝐺 ∘ ( 𝑥 ∘ 𝐹 ) ) ‘ 𝑑 ) = ( ( ◡ 𝐺 ∘ ( 𝑦 ∘ 𝐹 ) ) ‘ 𝑑 ) ) ) ) ) |
| 113 |
95 100 112
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) → ( ( ◡ 𝐺 ∘ ( 𝑥 ∘ 𝐹 ) ) { 〈 𝑎 , 𝑏 〉 ∣ ∃ 𝑐 ∈ dom 𝐹 ( ( 𝑎 ‘ 𝑐 ) ∈ ( 𝑏 ‘ 𝑐 ) ∧ ∀ 𝑑 ∈ dom 𝐹 ( 𝑐 ∈ 𝑑 → ( 𝑎 ‘ 𝑑 ) = ( 𝑏 ‘ 𝑑 ) ) ) } ( ◡ 𝐺 ∘ ( 𝑦 ∘ 𝐹 ) ) ↔ ∃ 𝑐 ∈ dom 𝐹 ( ( ( ◡ 𝐺 ∘ ( 𝑥 ∘ 𝐹 ) ) ‘ 𝑐 ) ∈ ( ( ◡ 𝐺 ∘ ( 𝑦 ∘ 𝐹 ) ) ‘ 𝑐 ) ∧ ∀ 𝑑 ∈ dom 𝐹 ( 𝑐 ∈ 𝑑 → ( ( ◡ 𝐺 ∘ ( 𝑥 ∘ 𝐹 ) ) ‘ 𝑑 ) = ( ( ◡ 𝐺 ∘ ( 𝑦 ∘ 𝐹 ) ) ‘ 𝑑 ) ) ) ) ) |
| 114 |
|
eqid |
⊢ ( 𝑓 ∈ 𝑈 ↦ ( ◡ 𝐺 ∘ ( 𝑓 ∘ 𝐹 ) ) ) = ( 𝑓 ∈ 𝑈 ↦ ( ◡ 𝐺 ∘ ( 𝑓 ∘ 𝐹 ) ) ) |
| 115 |
|
coeq1 |
⊢ ( 𝑓 = 𝑥 → ( 𝑓 ∘ 𝐹 ) = ( 𝑥 ∘ 𝐹 ) ) |
| 116 |
115
|
coeq2d |
⊢ ( 𝑓 = 𝑥 → ( ◡ 𝐺 ∘ ( 𝑓 ∘ 𝐹 ) ) = ( ◡ 𝐺 ∘ ( 𝑥 ∘ 𝐹 ) ) ) |
| 117 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) → 𝑥 ∈ 𝑈 ) |
| 118 |
114 116 117 95
|
fvmptd3 |
⊢ ( ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) → ( ( 𝑓 ∈ 𝑈 ↦ ( ◡ 𝐺 ∘ ( 𝑓 ∘ 𝐹 ) ) ) ‘ 𝑥 ) = ( ◡ 𝐺 ∘ ( 𝑥 ∘ 𝐹 ) ) ) |
| 119 |
|
coeq1 |
⊢ ( 𝑓 = 𝑦 → ( 𝑓 ∘ 𝐹 ) = ( 𝑦 ∘ 𝐹 ) ) |
| 120 |
119
|
coeq2d |
⊢ ( 𝑓 = 𝑦 → ( ◡ 𝐺 ∘ ( 𝑓 ∘ 𝐹 ) ) = ( ◡ 𝐺 ∘ ( 𝑦 ∘ 𝐹 ) ) ) |
| 121 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) → 𝑦 ∈ 𝑈 ) |
| 122 |
114 120 121 100
|
fvmptd3 |
⊢ ( ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) → ( ( 𝑓 ∈ 𝑈 ↦ ( ◡ 𝐺 ∘ ( 𝑓 ∘ 𝐹 ) ) ) ‘ 𝑦 ) = ( ◡ 𝐺 ∘ ( 𝑦 ∘ 𝐹 ) ) ) |
| 123 |
118 122
|
breq12d |
⊢ ( ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) → ( ( ( 𝑓 ∈ 𝑈 ↦ ( ◡ 𝐺 ∘ ( 𝑓 ∘ 𝐹 ) ) ) ‘ 𝑥 ) { 〈 𝑎 , 𝑏 〉 ∣ ∃ 𝑐 ∈ dom 𝐹 ( ( 𝑎 ‘ 𝑐 ) ∈ ( 𝑏 ‘ 𝑐 ) ∧ ∀ 𝑑 ∈ dom 𝐹 ( 𝑐 ∈ 𝑑 → ( 𝑎 ‘ 𝑑 ) = ( 𝑏 ‘ 𝑑 ) ) ) } ( ( 𝑓 ∈ 𝑈 ↦ ( ◡ 𝐺 ∘ ( 𝑓 ∘ 𝐹 ) ) ) ‘ 𝑦 ) ↔ ( ◡ 𝐺 ∘ ( 𝑥 ∘ 𝐹 ) ) { 〈 𝑎 , 𝑏 〉 ∣ ∃ 𝑐 ∈ dom 𝐹 ( ( 𝑎 ‘ 𝑐 ) ∈ ( 𝑏 ‘ 𝑐 ) ∧ ∀ 𝑑 ∈ dom 𝐹 ( 𝑐 ∈ 𝑑 → ( 𝑎 ‘ 𝑑 ) = ( 𝑏 ‘ 𝑑 ) ) ) } ( ◡ 𝐺 ∘ ( 𝑦 ∘ 𝐹 ) ) ) ) |
| 124 |
20
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) ∧ 𝑐 ∈ dom 𝐹 ) → 𝐺 Isom E , 𝑆 ( dom 𝐺 , 𝐵 ) ) |
| 125 |
|
isocnv |
⊢ ( 𝐺 Isom E , 𝑆 ( dom 𝐺 , 𝐵 ) → ◡ 𝐺 Isom 𝑆 , E ( 𝐵 , dom 𝐺 ) ) |
| 126 |
124 125
|
syl |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) ∧ 𝑐 ∈ dom 𝐹 ) → ◡ 𝐺 Isom 𝑆 , E ( 𝐵 , dom 𝐺 ) ) |
| 127 |
2
|
ssrab3 |
⊢ 𝑈 ⊆ ( 𝐵 ↑m 𝐴 ) |
| 128 |
127 117
|
sselid |
⊢ ( ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) → 𝑥 ∈ ( 𝐵 ↑m 𝐴 ) ) |
| 129 |
|
elmapi |
⊢ ( 𝑥 ∈ ( 𝐵 ↑m 𝐴 ) → 𝑥 : 𝐴 ⟶ 𝐵 ) |
| 130 |
128 129
|
syl |
⊢ ( ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) → 𝑥 : 𝐴 ⟶ 𝐵 ) |
| 131 |
6
|
oif |
⊢ 𝐹 : dom 𝐹 ⟶ 𝐴 |
| 132 |
131
|
ffvelcdmi |
⊢ ( 𝑐 ∈ dom 𝐹 → ( 𝐹 ‘ 𝑐 ) ∈ 𝐴 ) |
| 133 |
|
ffvelcdm |
⊢ ( ( 𝑥 : 𝐴 ⟶ 𝐵 ∧ ( 𝐹 ‘ 𝑐 ) ∈ 𝐴 ) → ( 𝑥 ‘ ( 𝐹 ‘ 𝑐 ) ) ∈ 𝐵 ) |
| 134 |
130 132 133
|
syl2an |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) ∧ 𝑐 ∈ dom 𝐹 ) → ( 𝑥 ‘ ( 𝐹 ‘ 𝑐 ) ) ∈ 𝐵 ) |
| 135 |
127 121
|
sselid |
⊢ ( ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) → 𝑦 ∈ ( 𝐵 ↑m 𝐴 ) ) |
| 136 |
|
elmapi |
⊢ ( 𝑦 ∈ ( 𝐵 ↑m 𝐴 ) → 𝑦 : 𝐴 ⟶ 𝐵 ) |
| 137 |
135 136
|
syl |
⊢ ( ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) → 𝑦 : 𝐴 ⟶ 𝐵 ) |
| 138 |
|
ffvelcdm |
⊢ ( ( 𝑦 : 𝐴 ⟶ 𝐵 ∧ ( 𝐹 ‘ 𝑐 ) ∈ 𝐴 ) → ( 𝑦 ‘ ( 𝐹 ‘ 𝑐 ) ) ∈ 𝐵 ) |
| 139 |
137 132 138
|
syl2an |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) ∧ 𝑐 ∈ dom 𝐹 ) → ( 𝑦 ‘ ( 𝐹 ‘ 𝑐 ) ) ∈ 𝐵 ) |
| 140 |
|
isorel |
⊢ ( ( ◡ 𝐺 Isom 𝑆 , E ( 𝐵 , dom 𝐺 ) ∧ ( ( 𝑥 ‘ ( 𝐹 ‘ 𝑐 ) ) ∈ 𝐵 ∧ ( 𝑦 ‘ ( 𝐹 ‘ 𝑐 ) ) ∈ 𝐵 ) ) → ( ( 𝑥 ‘ ( 𝐹 ‘ 𝑐 ) ) 𝑆 ( 𝑦 ‘ ( 𝐹 ‘ 𝑐 ) ) ↔ ( ◡ 𝐺 ‘ ( 𝑥 ‘ ( 𝐹 ‘ 𝑐 ) ) ) E ( ◡ 𝐺 ‘ ( 𝑦 ‘ ( 𝐹 ‘ 𝑐 ) ) ) ) ) |
| 141 |
126 134 139 140
|
syl12anc |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) ∧ 𝑐 ∈ dom 𝐹 ) → ( ( 𝑥 ‘ ( 𝐹 ‘ 𝑐 ) ) 𝑆 ( 𝑦 ‘ ( 𝐹 ‘ 𝑐 ) ) ↔ ( ◡ 𝐺 ‘ ( 𝑥 ‘ ( 𝐹 ‘ 𝑐 ) ) ) E ( ◡ 𝐺 ‘ ( 𝑦 ‘ ( 𝐹 ‘ 𝑐 ) ) ) ) ) |
| 142 |
|
fvex |
⊢ ( ◡ 𝐺 ‘ ( 𝑦 ‘ ( 𝐹 ‘ 𝑐 ) ) ) ∈ V |
| 143 |
142
|
epeli |
⊢ ( ( ◡ 𝐺 ‘ ( 𝑥 ‘ ( 𝐹 ‘ 𝑐 ) ) ) E ( ◡ 𝐺 ‘ ( 𝑦 ‘ ( 𝐹 ‘ 𝑐 ) ) ) ↔ ( ◡ 𝐺 ‘ ( 𝑥 ‘ ( 𝐹 ‘ 𝑐 ) ) ) ∈ ( ◡ 𝐺 ‘ ( 𝑦 ‘ ( 𝐹 ‘ 𝑐 ) ) ) ) |
| 144 |
141 143
|
bitrdi |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) ∧ 𝑐 ∈ dom 𝐹 ) → ( ( 𝑥 ‘ ( 𝐹 ‘ 𝑐 ) ) 𝑆 ( 𝑦 ‘ ( 𝐹 ‘ 𝑐 ) ) ↔ ( ◡ 𝐺 ‘ ( 𝑥 ‘ ( 𝐹 ‘ 𝑐 ) ) ) ∈ ( ◡ 𝐺 ‘ ( 𝑦 ‘ ( 𝐹 ‘ 𝑐 ) ) ) ) ) |
| 145 |
130
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) ∧ 𝑐 ∈ dom 𝐹 ) → 𝑥 : 𝐴 ⟶ 𝐵 ) |
| 146 |
|
fco |
⊢ ( ( 𝑥 : 𝐴 ⟶ 𝐵 ∧ 𝐹 : dom 𝐹 ⟶ 𝐴 ) → ( 𝑥 ∘ 𝐹 ) : dom 𝐹 ⟶ 𝐵 ) |
| 147 |
145 131 146
|
sylancl |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) ∧ 𝑐 ∈ dom 𝐹 ) → ( 𝑥 ∘ 𝐹 ) : dom 𝐹 ⟶ 𝐵 ) |
| 148 |
|
fvco3 |
⊢ ( ( ( 𝑥 ∘ 𝐹 ) : dom 𝐹 ⟶ 𝐵 ∧ 𝑐 ∈ dom 𝐹 ) → ( ( ◡ 𝐺 ∘ ( 𝑥 ∘ 𝐹 ) ) ‘ 𝑐 ) = ( ◡ 𝐺 ‘ ( ( 𝑥 ∘ 𝐹 ) ‘ 𝑐 ) ) ) |
| 149 |
147 148
|
sylancom |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) ∧ 𝑐 ∈ dom 𝐹 ) → ( ( ◡ 𝐺 ∘ ( 𝑥 ∘ 𝐹 ) ) ‘ 𝑐 ) = ( ◡ 𝐺 ‘ ( ( 𝑥 ∘ 𝐹 ) ‘ 𝑐 ) ) ) |
| 150 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) ∧ 𝑐 ∈ dom 𝐹 ) → 𝑐 ∈ dom 𝐹 ) |
| 151 |
|
fvco3 |
⊢ ( ( 𝐹 : dom 𝐹 ⟶ 𝐴 ∧ 𝑐 ∈ dom 𝐹 ) → ( ( 𝑥 ∘ 𝐹 ) ‘ 𝑐 ) = ( 𝑥 ‘ ( 𝐹 ‘ 𝑐 ) ) ) |
| 152 |
131 150 151
|
sylancr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) ∧ 𝑐 ∈ dom 𝐹 ) → ( ( 𝑥 ∘ 𝐹 ) ‘ 𝑐 ) = ( 𝑥 ‘ ( 𝐹 ‘ 𝑐 ) ) ) |
| 153 |
152
|
fveq2d |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) ∧ 𝑐 ∈ dom 𝐹 ) → ( ◡ 𝐺 ‘ ( ( 𝑥 ∘ 𝐹 ) ‘ 𝑐 ) ) = ( ◡ 𝐺 ‘ ( 𝑥 ‘ ( 𝐹 ‘ 𝑐 ) ) ) ) |
| 154 |
149 153
|
eqtrd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) ∧ 𝑐 ∈ dom 𝐹 ) → ( ( ◡ 𝐺 ∘ ( 𝑥 ∘ 𝐹 ) ) ‘ 𝑐 ) = ( ◡ 𝐺 ‘ ( 𝑥 ‘ ( 𝐹 ‘ 𝑐 ) ) ) ) |
| 155 |
137
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) ∧ 𝑐 ∈ dom 𝐹 ) → 𝑦 : 𝐴 ⟶ 𝐵 ) |
| 156 |
|
fco |
⊢ ( ( 𝑦 : 𝐴 ⟶ 𝐵 ∧ 𝐹 : dom 𝐹 ⟶ 𝐴 ) → ( 𝑦 ∘ 𝐹 ) : dom 𝐹 ⟶ 𝐵 ) |
| 157 |
155 131 156
|
sylancl |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) ∧ 𝑐 ∈ dom 𝐹 ) → ( 𝑦 ∘ 𝐹 ) : dom 𝐹 ⟶ 𝐵 ) |
| 158 |
|
fvco3 |
⊢ ( ( ( 𝑦 ∘ 𝐹 ) : dom 𝐹 ⟶ 𝐵 ∧ 𝑐 ∈ dom 𝐹 ) → ( ( ◡ 𝐺 ∘ ( 𝑦 ∘ 𝐹 ) ) ‘ 𝑐 ) = ( ◡ 𝐺 ‘ ( ( 𝑦 ∘ 𝐹 ) ‘ 𝑐 ) ) ) |
| 159 |
157 158
|
sylancom |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) ∧ 𝑐 ∈ dom 𝐹 ) → ( ( ◡ 𝐺 ∘ ( 𝑦 ∘ 𝐹 ) ) ‘ 𝑐 ) = ( ◡ 𝐺 ‘ ( ( 𝑦 ∘ 𝐹 ) ‘ 𝑐 ) ) ) |
| 160 |
|
fvco3 |
⊢ ( ( 𝐹 : dom 𝐹 ⟶ 𝐴 ∧ 𝑐 ∈ dom 𝐹 ) → ( ( 𝑦 ∘ 𝐹 ) ‘ 𝑐 ) = ( 𝑦 ‘ ( 𝐹 ‘ 𝑐 ) ) ) |
| 161 |
131 150 160
|
sylancr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) ∧ 𝑐 ∈ dom 𝐹 ) → ( ( 𝑦 ∘ 𝐹 ) ‘ 𝑐 ) = ( 𝑦 ‘ ( 𝐹 ‘ 𝑐 ) ) ) |
| 162 |
161
|
fveq2d |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) ∧ 𝑐 ∈ dom 𝐹 ) → ( ◡ 𝐺 ‘ ( ( 𝑦 ∘ 𝐹 ) ‘ 𝑐 ) ) = ( ◡ 𝐺 ‘ ( 𝑦 ‘ ( 𝐹 ‘ 𝑐 ) ) ) ) |
| 163 |
159 162
|
eqtrd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) ∧ 𝑐 ∈ dom 𝐹 ) → ( ( ◡ 𝐺 ∘ ( 𝑦 ∘ 𝐹 ) ) ‘ 𝑐 ) = ( ◡ 𝐺 ‘ ( 𝑦 ‘ ( 𝐹 ‘ 𝑐 ) ) ) ) |
| 164 |
154 163
|
eleq12d |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) ∧ 𝑐 ∈ dom 𝐹 ) → ( ( ( ◡ 𝐺 ∘ ( 𝑥 ∘ 𝐹 ) ) ‘ 𝑐 ) ∈ ( ( ◡ 𝐺 ∘ ( 𝑦 ∘ 𝐹 ) ) ‘ 𝑐 ) ↔ ( ◡ 𝐺 ‘ ( 𝑥 ‘ ( 𝐹 ‘ 𝑐 ) ) ) ∈ ( ◡ 𝐺 ‘ ( 𝑦 ‘ ( 𝐹 ‘ 𝑐 ) ) ) ) ) |
| 165 |
144 164
|
bitr4d |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) ∧ 𝑐 ∈ dom 𝐹 ) → ( ( 𝑥 ‘ ( 𝐹 ‘ 𝑐 ) ) 𝑆 ( 𝑦 ‘ ( 𝐹 ‘ 𝑐 ) ) ↔ ( ( ◡ 𝐺 ∘ ( 𝑥 ∘ 𝐹 ) ) ‘ 𝑐 ) ∈ ( ( ◡ 𝐺 ∘ ( 𝑦 ∘ 𝐹 ) ) ‘ 𝑐 ) ) ) |
| 166 |
85
|
raleqdv |
⊢ ( ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) → ( ∀ 𝑤 ∈ ran 𝐹 ( ( 𝐹 ‘ 𝑐 ) 𝑅 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ↔ ∀ 𝑤 ∈ 𝐴 ( ( 𝐹 ‘ 𝑐 ) 𝑅 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ) |
| 167 |
|
breq2 |
⊢ ( 𝑤 = ( 𝐹 ‘ 𝑑 ) → ( ( 𝐹 ‘ 𝑐 ) 𝑅 𝑤 ↔ ( 𝐹 ‘ 𝑐 ) 𝑅 ( 𝐹 ‘ 𝑑 ) ) ) |
| 168 |
|
fveq2 |
⊢ ( 𝑤 = ( 𝐹 ‘ 𝑑 ) → ( 𝑥 ‘ 𝑤 ) = ( 𝑥 ‘ ( 𝐹 ‘ 𝑑 ) ) ) |
| 169 |
|
fveq2 |
⊢ ( 𝑤 = ( 𝐹 ‘ 𝑑 ) → ( 𝑦 ‘ 𝑤 ) = ( 𝑦 ‘ ( 𝐹 ‘ 𝑑 ) ) ) |
| 170 |
168 169
|
eqeq12d |
⊢ ( 𝑤 = ( 𝐹 ‘ 𝑑 ) → ( ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ↔ ( 𝑥 ‘ ( 𝐹 ‘ 𝑑 ) ) = ( 𝑦 ‘ ( 𝐹 ‘ 𝑑 ) ) ) ) |
| 171 |
167 170
|
imbi12d |
⊢ ( 𝑤 = ( 𝐹 ‘ 𝑑 ) → ( ( ( 𝐹 ‘ 𝑐 ) 𝑅 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ↔ ( ( 𝐹 ‘ 𝑐 ) 𝑅 ( 𝐹 ‘ 𝑑 ) → ( 𝑥 ‘ ( 𝐹 ‘ 𝑑 ) ) = ( 𝑦 ‘ ( 𝐹 ‘ 𝑑 ) ) ) ) ) |
| 172 |
171
|
ralrn |
⊢ ( 𝐹 Fn dom 𝐹 → ( ∀ 𝑤 ∈ ran 𝐹 ( ( 𝐹 ‘ 𝑐 ) 𝑅 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ↔ ∀ 𝑑 ∈ dom 𝐹 ( ( 𝐹 ‘ 𝑐 ) 𝑅 ( 𝐹 ‘ 𝑑 ) → ( 𝑥 ‘ ( 𝐹 ‘ 𝑑 ) ) = ( 𝑦 ‘ ( 𝐹 ‘ 𝑑 ) ) ) ) ) |
| 173 |
72 73 172
|
3syl |
⊢ ( ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) → ( ∀ 𝑤 ∈ ran 𝐹 ( ( 𝐹 ‘ 𝑐 ) 𝑅 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ↔ ∀ 𝑑 ∈ dom 𝐹 ( ( 𝐹 ‘ 𝑐 ) 𝑅 ( 𝐹 ‘ 𝑑 ) → ( 𝑥 ‘ ( 𝐹 ‘ 𝑑 ) ) = ( 𝑦 ‘ ( 𝐹 ‘ 𝑑 ) ) ) ) ) |
| 174 |
166 173
|
bitr3d |
⊢ ( ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) → ( ∀ 𝑤 ∈ 𝐴 ( ( 𝐹 ‘ 𝑐 ) 𝑅 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ↔ ∀ 𝑑 ∈ dom 𝐹 ( ( 𝐹 ‘ 𝑐 ) 𝑅 ( 𝐹 ‘ 𝑑 ) → ( 𝑥 ‘ ( 𝐹 ‘ 𝑑 ) ) = ( 𝑦 ‘ ( 𝐹 ‘ 𝑑 ) ) ) ) ) |
| 175 |
174
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) ∧ 𝑐 ∈ dom 𝐹 ) → ( ∀ 𝑤 ∈ 𝐴 ( ( 𝐹 ‘ 𝑐 ) 𝑅 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ↔ ∀ 𝑑 ∈ dom 𝐹 ( ( 𝐹 ‘ 𝑐 ) 𝑅 ( 𝐹 ‘ 𝑑 ) → ( 𝑥 ‘ ( 𝐹 ‘ 𝑑 ) ) = ( 𝑦 ‘ ( 𝐹 ‘ 𝑑 ) ) ) ) ) |
| 176 |
|
epel |
⊢ ( 𝑐 E 𝑑 ↔ 𝑐 ∈ 𝑑 ) |
| 177 |
14
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) ∧ ( 𝑐 ∈ dom 𝐹 ∧ 𝑑 ∈ dom 𝐹 ) ) → 𝐹 Isom E , 𝑅 ( dom 𝐹 , 𝐴 ) ) |
| 178 |
|
isorel |
⊢ ( ( 𝐹 Isom E , 𝑅 ( dom 𝐹 , 𝐴 ) ∧ ( 𝑐 ∈ dom 𝐹 ∧ 𝑑 ∈ dom 𝐹 ) ) → ( 𝑐 E 𝑑 ↔ ( 𝐹 ‘ 𝑐 ) 𝑅 ( 𝐹 ‘ 𝑑 ) ) ) |
| 179 |
177 178
|
sylancom |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) ∧ ( 𝑐 ∈ dom 𝐹 ∧ 𝑑 ∈ dom 𝐹 ) ) → ( 𝑐 E 𝑑 ↔ ( 𝐹 ‘ 𝑐 ) 𝑅 ( 𝐹 ‘ 𝑑 ) ) ) |
| 180 |
176 179
|
bitr3id |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) ∧ ( 𝑐 ∈ dom 𝐹 ∧ 𝑑 ∈ dom 𝐹 ) ) → ( 𝑐 ∈ 𝑑 ↔ ( 𝐹 ‘ 𝑐 ) 𝑅 ( 𝐹 ‘ 𝑑 ) ) ) |
| 181 |
147
|
adantrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) ∧ ( 𝑐 ∈ dom 𝐹 ∧ 𝑑 ∈ dom 𝐹 ) ) → ( 𝑥 ∘ 𝐹 ) : dom 𝐹 ⟶ 𝐵 ) |
| 182 |
|
simprr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) ∧ ( 𝑐 ∈ dom 𝐹 ∧ 𝑑 ∈ dom 𝐹 ) ) → 𝑑 ∈ dom 𝐹 ) |
| 183 |
181 182
|
fvco3d |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) ∧ ( 𝑐 ∈ dom 𝐹 ∧ 𝑑 ∈ dom 𝐹 ) ) → ( ( ◡ 𝐺 ∘ ( 𝑥 ∘ 𝐹 ) ) ‘ 𝑑 ) = ( ◡ 𝐺 ‘ ( ( 𝑥 ∘ 𝐹 ) ‘ 𝑑 ) ) ) |
| 184 |
157
|
adantrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) ∧ ( 𝑐 ∈ dom 𝐹 ∧ 𝑑 ∈ dom 𝐹 ) ) → ( 𝑦 ∘ 𝐹 ) : dom 𝐹 ⟶ 𝐵 ) |
| 185 |
184 182
|
fvco3d |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) ∧ ( 𝑐 ∈ dom 𝐹 ∧ 𝑑 ∈ dom 𝐹 ) ) → ( ( ◡ 𝐺 ∘ ( 𝑦 ∘ 𝐹 ) ) ‘ 𝑑 ) = ( ◡ 𝐺 ‘ ( ( 𝑦 ∘ 𝐹 ) ‘ 𝑑 ) ) ) |
| 186 |
183 185
|
eqeq12d |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) ∧ ( 𝑐 ∈ dom 𝐹 ∧ 𝑑 ∈ dom 𝐹 ) ) → ( ( ( ◡ 𝐺 ∘ ( 𝑥 ∘ 𝐹 ) ) ‘ 𝑑 ) = ( ( ◡ 𝐺 ∘ ( 𝑦 ∘ 𝐹 ) ) ‘ 𝑑 ) ↔ ( ◡ 𝐺 ‘ ( ( 𝑥 ∘ 𝐹 ) ‘ 𝑑 ) ) = ( ◡ 𝐺 ‘ ( ( 𝑦 ∘ 𝐹 ) ‘ 𝑑 ) ) ) ) |
| 187 |
30
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) ∧ ( 𝑐 ∈ dom 𝐹 ∧ 𝑑 ∈ dom 𝐹 ) ) → 𝐺 : dom 𝐺 –1-1-onto→ 𝐵 ) |
| 188 |
|
f1of1 |
⊢ ( ◡ 𝐺 : 𝐵 –1-1-onto→ dom 𝐺 → ◡ 𝐺 : 𝐵 –1-1→ dom 𝐺 ) |
| 189 |
187 22 188
|
3syl |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) ∧ ( 𝑐 ∈ dom 𝐹 ∧ 𝑑 ∈ dom 𝐹 ) ) → ◡ 𝐺 : 𝐵 –1-1→ dom 𝐺 ) |
| 190 |
181 182
|
ffvelcdmd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) ∧ ( 𝑐 ∈ dom 𝐹 ∧ 𝑑 ∈ dom 𝐹 ) ) → ( ( 𝑥 ∘ 𝐹 ) ‘ 𝑑 ) ∈ 𝐵 ) |
| 191 |
184 182
|
ffvelcdmd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) ∧ ( 𝑐 ∈ dom 𝐹 ∧ 𝑑 ∈ dom 𝐹 ) ) → ( ( 𝑦 ∘ 𝐹 ) ‘ 𝑑 ) ∈ 𝐵 ) |
| 192 |
|
f1fveq |
⊢ ( ( ◡ 𝐺 : 𝐵 –1-1→ dom 𝐺 ∧ ( ( ( 𝑥 ∘ 𝐹 ) ‘ 𝑑 ) ∈ 𝐵 ∧ ( ( 𝑦 ∘ 𝐹 ) ‘ 𝑑 ) ∈ 𝐵 ) ) → ( ( ◡ 𝐺 ‘ ( ( 𝑥 ∘ 𝐹 ) ‘ 𝑑 ) ) = ( ◡ 𝐺 ‘ ( ( 𝑦 ∘ 𝐹 ) ‘ 𝑑 ) ) ↔ ( ( 𝑥 ∘ 𝐹 ) ‘ 𝑑 ) = ( ( 𝑦 ∘ 𝐹 ) ‘ 𝑑 ) ) ) |
| 193 |
189 190 191 192
|
syl12anc |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) ∧ ( 𝑐 ∈ dom 𝐹 ∧ 𝑑 ∈ dom 𝐹 ) ) → ( ( ◡ 𝐺 ‘ ( ( 𝑥 ∘ 𝐹 ) ‘ 𝑑 ) ) = ( ◡ 𝐺 ‘ ( ( 𝑦 ∘ 𝐹 ) ‘ 𝑑 ) ) ↔ ( ( 𝑥 ∘ 𝐹 ) ‘ 𝑑 ) = ( ( 𝑦 ∘ 𝐹 ) ‘ 𝑑 ) ) ) |
| 194 |
|
fvco3 |
⊢ ( ( 𝐹 : dom 𝐹 ⟶ 𝐴 ∧ 𝑑 ∈ dom 𝐹 ) → ( ( 𝑥 ∘ 𝐹 ) ‘ 𝑑 ) = ( 𝑥 ‘ ( 𝐹 ‘ 𝑑 ) ) ) |
| 195 |
131 182 194
|
sylancr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) ∧ ( 𝑐 ∈ dom 𝐹 ∧ 𝑑 ∈ dom 𝐹 ) ) → ( ( 𝑥 ∘ 𝐹 ) ‘ 𝑑 ) = ( 𝑥 ‘ ( 𝐹 ‘ 𝑑 ) ) ) |
| 196 |
|
fvco3 |
⊢ ( ( 𝐹 : dom 𝐹 ⟶ 𝐴 ∧ 𝑑 ∈ dom 𝐹 ) → ( ( 𝑦 ∘ 𝐹 ) ‘ 𝑑 ) = ( 𝑦 ‘ ( 𝐹 ‘ 𝑑 ) ) ) |
| 197 |
131 182 196
|
sylancr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) ∧ ( 𝑐 ∈ dom 𝐹 ∧ 𝑑 ∈ dom 𝐹 ) ) → ( ( 𝑦 ∘ 𝐹 ) ‘ 𝑑 ) = ( 𝑦 ‘ ( 𝐹 ‘ 𝑑 ) ) ) |
| 198 |
195 197
|
eqeq12d |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) ∧ ( 𝑐 ∈ dom 𝐹 ∧ 𝑑 ∈ dom 𝐹 ) ) → ( ( ( 𝑥 ∘ 𝐹 ) ‘ 𝑑 ) = ( ( 𝑦 ∘ 𝐹 ) ‘ 𝑑 ) ↔ ( 𝑥 ‘ ( 𝐹 ‘ 𝑑 ) ) = ( 𝑦 ‘ ( 𝐹 ‘ 𝑑 ) ) ) ) |
| 199 |
186 193 198
|
3bitrd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) ∧ ( 𝑐 ∈ dom 𝐹 ∧ 𝑑 ∈ dom 𝐹 ) ) → ( ( ( ◡ 𝐺 ∘ ( 𝑥 ∘ 𝐹 ) ) ‘ 𝑑 ) = ( ( ◡ 𝐺 ∘ ( 𝑦 ∘ 𝐹 ) ) ‘ 𝑑 ) ↔ ( 𝑥 ‘ ( 𝐹 ‘ 𝑑 ) ) = ( 𝑦 ‘ ( 𝐹 ‘ 𝑑 ) ) ) ) |
| 200 |
180 199
|
imbi12d |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) ∧ ( 𝑐 ∈ dom 𝐹 ∧ 𝑑 ∈ dom 𝐹 ) ) → ( ( 𝑐 ∈ 𝑑 → ( ( ◡ 𝐺 ∘ ( 𝑥 ∘ 𝐹 ) ) ‘ 𝑑 ) = ( ( ◡ 𝐺 ∘ ( 𝑦 ∘ 𝐹 ) ) ‘ 𝑑 ) ) ↔ ( ( 𝐹 ‘ 𝑐 ) 𝑅 ( 𝐹 ‘ 𝑑 ) → ( 𝑥 ‘ ( 𝐹 ‘ 𝑑 ) ) = ( 𝑦 ‘ ( 𝐹 ‘ 𝑑 ) ) ) ) ) |
| 201 |
200
|
anassrs |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) ∧ 𝑐 ∈ dom 𝐹 ) ∧ 𝑑 ∈ dom 𝐹 ) → ( ( 𝑐 ∈ 𝑑 → ( ( ◡ 𝐺 ∘ ( 𝑥 ∘ 𝐹 ) ) ‘ 𝑑 ) = ( ( ◡ 𝐺 ∘ ( 𝑦 ∘ 𝐹 ) ) ‘ 𝑑 ) ) ↔ ( ( 𝐹 ‘ 𝑐 ) 𝑅 ( 𝐹 ‘ 𝑑 ) → ( 𝑥 ‘ ( 𝐹 ‘ 𝑑 ) ) = ( 𝑦 ‘ ( 𝐹 ‘ 𝑑 ) ) ) ) ) |
| 202 |
201
|
ralbidva |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) ∧ 𝑐 ∈ dom 𝐹 ) → ( ∀ 𝑑 ∈ dom 𝐹 ( 𝑐 ∈ 𝑑 → ( ( ◡ 𝐺 ∘ ( 𝑥 ∘ 𝐹 ) ) ‘ 𝑑 ) = ( ( ◡ 𝐺 ∘ ( 𝑦 ∘ 𝐹 ) ) ‘ 𝑑 ) ) ↔ ∀ 𝑑 ∈ dom 𝐹 ( ( 𝐹 ‘ 𝑐 ) 𝑅 ( 𝐹 ‘ 𝑑 ) → ( 𝑥 ‘ ( 𝐹 ‘ 𝑑 ) ) = ( 𝑦 ‘ ( 𝐹 ‘ 𝑑 ) ) ) ) ) |
| 203 |
175 202
|
bitr4d |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) ∧ 𝑐 ∈ dom 𝐹 ) → ( ∀ 𝑤 ∈ 𝐴 ( ( 𝐹 ‘ 𝑐 ) 𝑅 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ↔ ∀ 𝑑 ∈ dom 𝐹 ( 𝑐 ∈ 𝑑 → ( ( ◡ 𝐺 ∘ ( 𝑥 ∘ 𝐹 ) ) ‘ 𝑑 ) = ( ( ◡ 𝐺 ∘ ( 𝑦 ∘ 𝐹 ) ) ‘ 𝑑 ) ) ) ) |
| 204 |
165 203
|
anbi12d |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) ∧ 𝑐 ∈ dom 𝐹 ) → ( ( ( 𝑥 ‘ ( 𝐹 ‘ 𝑐 ) ) 𝑆 ( 𝑦 ‘ ( 𝐹 ‘ 𝑐 ) ) ∧ ∀ 𝑤 ∈ 𝐴 ( ( 𝐹 ‘ 𝑐 ) 𝑅 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ↔ ( ( ( ◡ 𝐺 ∘ ( 𝑥 ∘ 𝐹 ) ) ‘ 𝑐 ) ∈ ( ( ◡ 𝐺 ∘ ( 𝑦 ∘ 𝐹 ) ) ‘ 𝑐 ) ∧ ∀ 𝑑 ∈ dom 𝐹 ( 𝑐 ∈ 𝑑 → ( ( ◡ 𝐺 ∘ ( 𝑥 ∘ 𝐹 ) ) ‘ 𝑑 ) = ( ( ◡ 𝐺 ∘ ( 𝑦 ∘ 𝐹 ) ) ‘ 𝑑 ) ) ) ) ) |
| 205 |
204
|
rexbidva |
⊢ ( ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) → ( ∃ 𝑐 ∈ dom 𝐹 ( ( 𝑥 ‘ ( 𝐹 ‘ 𝑐 ) ) 𝑆 ( 𝑦 ‘ ( 𝐹 ‘ 𝑐 ) ) ∧ ∀ 𝑤 ∈ 𝐴 ( ( 𝐹 ‘ 𝑐 ) 𝑅 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ↔ ∃ 𝑐 ∈ dom 𝐹 ( ( ( ◡ 𝐺 ∘ ( 𝑥 ∘ 𝐹 ) ) ‘ 𝑐 ) ∈ ( ( ◡ 𝐺 ∘ ( 𝑦 ∘ 𝐹 ) ) ‘ 𝑐 ) ∧ ∀ 𝑑 ∈ dom 𝐹 ( 𝑐 ∈ 𝑑 → ( ( ◡ 𝐺 ∘ ( 𝑥 ∘ 𝐹 ) ) ‘ 𝑑 ) = ( ( ◡ 𝐺 ∘ ( 𝑦 ∘ 𝐹 ) ) ‘ 𝑑 ) ) ) ) ) |
| 206 |
113 123 205
|
3bitr4rd |
⊢ ( ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) → ( ∃ 𝑐 ∈ dom 𝐹 ( ( 𝑥 ‘ ( 𝐹 ‘ 𝑐 ) ) 𝑆 ( 𝑦 ‘ ( 𝐹 ‘ 𝑐 ) ) ∧ ∀ 𝑤 ∈ 𝐴 ( ( 𝐹 ‘ 𝑐 ) 𝑅 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ↔ ( ( 𝑓 ∈ 𝑈 ↦ ( ◡ 𝐺 ∘ ( 𝑓 ∘ 𝐹 ) ) ) ‘ 𝑥 ) { 〈 𝑎 , 𝑏 〉 ∣ ∃ 𝑐 ∈ dom 𝐹 ( ( 𝑎 ‘ 𝑐 ) ∈ ( 𝑏 ‘ 𝑐 ) ∧ ∀ 𝑑 ∈ dom 𝐹 ( 𝑐 ∈ 𝑑 → ( 𝑎 ‘ 𝑑 ) = ( 𝑏 ‘ 𝑑 ) ) ) } ( ( 𝑓 ∈ 𝑈 ↦ ( ◡ 𝐺 ∘ ( 𝑓 ∘ 𝐹 ) ) ) ‘ 𝑦 ) ) ) |
| 207 |
82 86 206
|
3bitr3d |
⊢ ( ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) → ( ∃ 𝑧 ∈ 𝐴 ( ( 𝑥 ‘ 𝑧 ) 𝑆 ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐴 ( 𝑧 𝑅 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ↔ ( ( 𝑓 ∈ 𝑈 ↦ ( ◡ 𝐺 ∘ ( 𝑓 ∘ 𝐹 ) ) ) ‘ 𝑥 ) { 〈 𝑎 , 𝑏 〉 ∣ ∃ 𝑐 ∈ dom 𝐹 ( ( 𝑎 ‘ 𝑐 ) ∈ ( 𝑏 ‘ 𝑐 ) ∧ ∀ 𝑑 ∈ dom 𝐹 ( 𝑐 ∈ 𝑑 → ( 𝑎 ‘ 𝑑 ) = ( 𝑏 ‘ 𝑑 ) ) ) } ( ( 𝑓 ∈ 𝑈 ↦ ( ◡ 𝐺 ∘ ( 𝑓 ∘ 𝐹 ) ) ) ‘ 𝑦 ) ) ) |
| 208 |
207
|
ex |
⊢ ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) → ( ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) → ( ∃ 𝑧 ∈ 𝐴 ( ( 𝑥 ‘ 𝑧 ) 𝑆 ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐴 ( 𝑧 𝑅 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ↔ ( ( 𝑓 ∈ 𝑈 ↦ ( ◡ 𝐺 ∘ ( 𝑓 ∘ 𝐹 ) ) ) ‘ 𝑥 ) { 〈 𝑎 , 𝑏 〉 ∣ ∃ 𝑐 ∈ dom 𝐹 ( ( 𝑎 ‘ 𝑐 ) ∈ ( 𝑏 ‘ 𝑐 ) ∧ ∀ 𝑑 ∈ dom 𝐹 ( 𝑐 ∈ 𝑑 → ( 𝑎 ‘ 𝑑 ) = ( 𝑏 ‘ 𝑑 ) ) ) } ( ( 𝑓 ∈ 𝑈 ↦ ( ◡ 𝐺 ∘ ( 𝑓 ∘ 𝐹 ) ) ) ‘ 𝑦 ) ) ) ) |
| 209 |
208
|
pm5.32rd |
⊢ ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) → ( ( ∃ 𝑧 ∈ 𝐴 ( ( 𝑥 ‘ 𝑧 ) 𝑆 ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐴 ( 𝑧 𝑅 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) ↔ ( ( ( 𝑓 ∈ 𝑈 ↦ ( ◡ 𝐺 ∘ ( 𝑓 ∘ 𝐹 ) ) ) ‘ 𝑥 ) { 〈 𝑎 , 𝑏 〉 ∣ ∃ 𝑐 ∈ dom 𝐹 ( ( 𝑎 ‘ 𝑐 ) ∈ ( 𝑏 ‘ 𝑐 ) ∧ ∀ 𝑑 ∈ dom 𝐹 ( 𝑐 ∈ 𝑑 → ( 𝑎 ‘ 𝑑 ) = ( 𝑏 ‘ 𝑑 ) ) ) } ( ( 𝑓 ∈ 𝑈 ↦ ( ◡ 𝐺 ∘ ( 𝑓 ∘ 𝐹 ) ) ) ‘ 𝑦 ) ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) ) ) |
| 210 |
209
|
opabbidv |
⊢ ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) → { 〈 𝑥 , 𝑦 〉 ∣ ( ∃ 𝑧 ∈ 𝐴 ( ( 𝑥 ‘ 𝑧 ) 𝑆 ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐴 ( 𝑧 𝑅 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) } = { 〈 𝑥 , 𝑦 〉 ∣ ( ( ( 𝑓 ∈ 𝑈 ↦ ( ◡ 𝐺 ∘ ( 𝑓 ∘ 𝐹 ) ) ) ‘ 𝑥 ) { 〈 𝑎 , 𝑏 〉 ∣ ∃ 𝑐 ∈ dom 𝐹 ( ( 𝑎 ‘ 𝑐 ) ∈ ( 𝑏 ‘ 𝑐 ) ∧ ∀ 𝑑 ∈ dom 𝐹 ( 𝑐 ∈ 𝑑 → ( 𝑎 ‘ 𝑑 ) = ( 𝑏 ‘ 𝑑 ) ) ) } ( ( 𝑓 ∈ 𝑈 ↦ ( ◡ 𝐺 ∘ ( 𝑓 ∘ 𝐹 ) ) ) ‘ 𝑦 ) ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) } ) |
| 211 |
|
df-xp |
⊢ ( 𝑈 × 𝑈 ) = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) } |
| 212 |
1 211
|
ineq12i |
⊢ ( 𝑇 ∩ ( 𝑈 × 𝑈 ) ) = ( { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑧 ∈ 𝐴 ( ( 𝑥 ‘ 𝑧 ) 𝑆 ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐴 ( 𝑧 𝑅 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) } ∩ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) } ) |
| 213 |
|
inopab |
⊢ ( { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑧 ∈ 𝐴 ( ( 𝑥 ‘ 𝑧 ) 𝑆 ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐴 ( 𝑧 𝑅 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) } ∩ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) } ) = { 〈 𝑥 , 𝑦 〉 ∣ ( ∃ 𝑧 ∈ 𝐴 ( ( 𝑥 ‘ 𝑧 ) 𝑆 ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐴 ( 𝑧 𝑅 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) } |
| 214 |
212 213
|
eqtri |
⊢ ( 𝑇 ∩ ( 𝑈 × 𝑈 ) ) = { 〈 𝑥 , 𝑦 〉 ∣ ( ∃ 𝑧 ∈ 𝐴 ( ( 𝑥 ‘ 𝑧 ) 𝑆 ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐴 ( 𝑧 𝑅 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) } |
| 215 |
211
|
ineq2i |
⊢ ( { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑓 ∈ 𝑈 ↦ ( ◡ 𝐺 ∘ ( 𝑓 ∘ 𝐹 ) ) ) ‘ 𝑥 ) { 〈 𝑎 , 𝑏 〉 ∣ ∃ 𝑐 ∈ dom 𝐹 ( ( 𝑎 ‘ 𝑐 ) ∈ ( 𝑏 ‘ 𝑐 ) ∧ ∀ 𝑑 ∈ dom 𝐹 ( 𝑐 ∈ 𝑑 → ( 𝑎 ‘ 𝑑 ) = ( 𝑏 ‘ 𝑑 ) ) ) } ( ( 𝑓 ∈ 𝑈 ↦ ( ◡ 𝐺 ∘ ( 𝑓 ∘ 𝐹 ) ) ) ‘ 𝑦 ) } ∩ ( 𝑈 × 𝑈 ) ) = ( { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑓 ∈ 𝑈 ↦ ( ◡ 𝐺 ∘ ( 𝑓 ∘ 𝐹 ) ) ) ‘ 𝑥 ) { 〈 𝑎 , 𝑏 〉 ∣ ∃ 𝑐 ∈ dom 𝐹 ( ( 𝑎 ‘ 𝑐 ) ∈ ( 𝑏 ‘ 𝑐 ) ∧ ∀ 𝑑 ∈ dom 𝐹 ( 𝑐 ∈ 𝑑 → ( 𝑎 ‘ 𝑑 ) = ( 𝑏 ‘ 𝑑 ) ) ) } ( ( 𝑓 ∈ 𝑈 ↦ ( ◡ 𝐺 ∘ ( 𝑓 ∘ 𝐹 ) ) ) ‘ 𝑦 ) } ∩ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) } ) |
| 216 |
|
inopab |
⊢ ( { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑓 ∈ 𝑈 ↦ ( ◡ 𝐺 ∘ ( 𝑓 ∘ 𝐹 ) ) ) ‘ 𝑥 ) { 〈 𝑎 , 𝑏 〉 ∣ ∃ 𝑐 ∈ dom 𝐹 ( ( 𝑎 ‘ 𝑐 ) ∈ ( 𝑏 ‘ 𝑐 ) ∧ ∀ 𝑑 ∈ dom 𝐹 ( 𝑐 ∈ 𝑑 → ( 𝑎 ‘ 𝑑 ) = ( 𝑏 ‘ 𝑑 ) ) ) } ( ( 𝑓 ∈ 𝑈 ↦ ( ◡ 𝐺 ∘ ( 𝑓 ∘ 𝐹 ) ) ) ‘ 𝑦 ) } ∩ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) } ) = { 〈 𝑥 , 𝑦 〉 ∣ ( ( ( 𝑓 ∈ 𝑈 ↦ ( ◡ 𝐺 ∘ ( 𝑓 ∘ 𝐹 ) ) ) ‘ 𝑥 ) { 〈 𝑎 , 𝑏 〉 ∣ ∃ 𝑐 ∈ dom 𝐹 ( ( 𝑎 ‘ 𝑐 ) ∈ ( 𝑏 ‘ 𝑐 ) ∧ ∀ 𝑑 ∈ dom 𝐹 ( 𝑐 ∈ 𝑑 → ( 𝑎 ‘ 𝑑 ) = ( 𝑏 ‘ 𝑑 ) ) ) } ( ( 𝑓 ∈ 𝑈 ↦ ( ◡ 𝐺 ∘ ( 𝑓 ∘ 𝐹 ) ) ) ‘ 𝑦 ) ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) } |
| 217 |
215 216
|
eqtri |
⊢ ( { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑓 ∈ 𝑈 ↦ ( ◡ 𝐺 ∘ ( 𝑓 ∘ 𝐹 ) ) ) ‘ 𝑥 ) { 〈 𝑎 , 𝑏 〉 ∣ ∃ 𝑐 ∈ dom 𝐹 ( ( 𝑎 ‘ 𝑐 ) ∈ ( 𝑏 ‘ 𝑐 ) ∧ ∀ 𝑑 ∈ dom 𝐹 ( 𝑐 ∈ 𝑑 → ( 𝑎 ‘ 𝑑 ) = ( 𝑏 ‘ 𝑑 ) ) ) } ( ( 𝑓 ∈ 𝑈 ↦ ( ◡ 𝐺 ∘ ( 𝑓 ∘ 𝐹 ) ) ) ‘ 𝑦 ) } ∩ ( 𝑈 × 𝑈 ) ) = { 〈 𝑥 , 𝑦 〉 ∣ ( ( ( 𝑓 ∈ 𝑈 ↦ ( ◡ 𝐺 ∘ ( 𝑓 ∘ 𝐹 ) ) ) ‘ 𝑥 ) { 〈 𝑎 , 𝑏 〉 ∣ ∃ 𝑐 ∈ dom 𝐹 ( ( 𝑎 ‘ 𝑐 ) ∈ ( 𝑏 ‘ 𝑐 ) ∧ ∀ 𝑑 ∈ dom 𝐹 ( 𝑐 ∈ 𝑑 → ( 𝑎 ‘ 𝑑 ) = ( 𝑏 ‘ 𝑑 ) ) ) } ( ( 𝑓 ∈ 𝑈 ↦ ( ◡ 𝐺 ∘ ( 𝑓 ∘ 𝐹 ) ) ) ‘ 𝑦 ) ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) } |
| 218 |
210 214 217
|
3eqtr4g |
⊢ ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) → ( 𝑇 ∩ ( 𝑈 × 𝑈 ) ) = ( { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑓 ∈ 𝑈 ↦ ( ◡ 𝐺 ∘ ( 𝑓 ∘ 𝐹 ) ) ) ‘ 𝑥 ) { 〈 𝑎 , 𝑏 〉 ∣ ∃ 𝑐 ∈ dom 𝐹 ( ( 𝑎 ‘ 𝑐 ) ∈ ( 𝑏 ‘ 𝑐 ) ∧ ∀ 𝑑 ∈ dom 𝐹 ( 𝑐 ∈ 𝑑 → ( 𝑎 ‘ 𝑑 ) = ( 𝑏 ‘ 𝑑 ) ) ) } ( ( 𝑓 ∈ 𝑈 ↦ ( ◡ 𝐺 ∘ ( 𝑓 ∘ 𝐹 ) ) ) ‘ 𝑦 ) } ∩ ( 𝑈 × 𝑈 ) ) ) |
| 219 |
|
weeq1 |
⊢ ( ( 𝑇 ∩ ( 𝑈 × 𝑈 ) ) = ( { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑓 ∈ 𝑈 ↦ ( ◡ 𝐺 ∘ ( 𝑓 ∘ 𝐹 ) ) ) ‘ 𝑥 ) { 〈 𝑎 , 𝑏 〉 ∣ ∃ 𝑐 ∈ dom 𝐹 ( ( 𝑎 ‘ 𝑐 ) ∈ ( 𝑏 ‘ 𝑐 ) ∧ ∀ 𝑑 ∈ dom 𝐹 ( 𝑐 ∈ 𝑑 → ( 𝑎 ‘ 𝑑 ) = ( 𝑏 ‘ 𝑑 ) ) ) } ( ( 𝑓 ∈ 𝑈 ↦ ( ◡ 𝐺 ∘ ( 𝑓 ∘ 𝐹 ) ) ) ‘ 𝑦 ) } ∩ ( 𝑈 × 𝑈 ) ) → ( ( 𝑇 ∩ ( 𝑈 × 𝑈 ) ) We 𝑈 ↔ ( { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑓 ∈ 𝑈 ↦ ( ◡ 𝐺 ∘ ( 𝑓 ∘ 𝐹 ) ) ) ‘ 𝑥 ) { 〈 𝑎 , 𝑏 〉 ∣ ∃ 𝑐 ∈ dom 𝐹 ( ( 𝑎 ‘ 𝑐 ) ∈ ( 𝑏 ‘ 𝑐 ) ∧ ∀ 𝑑 ∈ dom 𝐹 ( 𝑐 ∈ 𝑑 → ( 𝑎 ‘ 𝑑 ) = ( 𝑏 ‘ 𝑑 ) ) ) } ( ( 𝑓 ∈ 𝑈 ↦ ( ◡ 𝐺 ∘ ( 𝑓 ∘ 𝐹 ) ) ) ‘ 𝑦 ) } ∩ ( 𝑈 × 𝑈 ) ) We 𝑈 ) ) |
| 220 |
218 219
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) → ( ( 𝑇 ∩ ( 𝑈 × 𝑈 ) ) We 𝑈 ↔ ( { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑓 ∈ 𝑈 ↦ ( ◡ 𝐺 ∘ ( 𝑓 ∘ 𝐹 ) ) ) ‘ 𝑥 ) { 〈 𝑎 , 𝑏 〉 ∣ ∃ 𝑐 ∈ dom 𝐹 ( ( 𝑎 ‘ 𝑐 ) ∈ ( 𝑏 ‘ 𝑐 ) ∧ ∀ 𝑑 ∈ dom 𝐹 ( 𝑐 ∈ 𝑑 → ( 𝑎 ‘ 𝑑 ) = ( 𝑏 ‘ 𝑑 ) ) ) } ( ( 𝑓 ∈ 𝑈 ↦ ( ◡ 𝐺 ∘ ( 𝑓 ∘ 𝐹 ) ) ) ‘ 𝑦 ) } ∩ ( 𝑈 × 𝑈 ) ) We 𝑈 ) ) |
| 221 |
71 220
|
mpbird |
⊢ ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) → ( 𝑇 ∩ ( 𝑈 × 𝑈 ) ) We 𝑈 ) |
| 222 |
|
weinxp |
⊢ ( 𝑇 We 𝑈 ↔ ( 𝑇 ∩ ( 𝑈 × 𝑈 ) ) We 𝑈 ) |
| 223 |
221 222
|
sylibr |
⊢ ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) → 𝑇 We 𝑈 ) |
| 224 |
223
|
ex |
⊢ ( 𝜑 → ( ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) → 𝑇 We 𝑈 ) ) |
| 225 |
|
we0 |
⊢ 𝑇 We ∅ |
| 226 |
|
elmapex |
⊢ ( 𝑥 ∈ ( 𝐵 ↑m 𝐴 ) → ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) |
| 227 |
226
|
con3i |
⊢ ( ¬ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) → ¬ 𝑥 ∈ ( 𝐵 ↑m 𝐴 ) ) |
| 228 |
227
|
pm2.21d |
⊢ ( ¬ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) → ( 𝑥 ∈ ( 𝐵 ↑m 𝐴 ) → ¬ 𝑥 finSupp 𝑍 ) ) |
| 229 |
228
|
ralrimiv |
⊢ ( ¬ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) → ∀ 𝑥 ∈ ( 𝐵 ↑m 𝐴 ) ¬ 𝑥 finSupp 𝑍 ) |
| 230 |
|
rabeq0 |
⊢ ( { 𝑥 ∈ ( 𝐵 ↑m 𝐴 ) ∣ 𝑥 finSupp 𝑍 } = ∅ ↔ ∀ 𝑥 ∈ ( 𝐵 ↑m 𝐴 ) ¬ 𝑥 finSupp 𝑍 ) |
| 231 |
229 230
|
sylibr |
⊢ ( ¬ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) → { 𝑥 ∈ ( 𝐵 ↑m 𝐴 ) ∣ 𝑥 finSupp 𝑍 } = ∅ ) |
| 232 |
2 231
|
eqtrid |
⊢ ( ¬ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) → 𝑈 = ∅ ) |
| 233 |
|
weeq2 |
⊢ ( 𝑈 = ∅ → ( 𝑇 We 𝑈 ↔ 𝑇 We ∅ ) ) |
| 234 |
232 233
|
syl |
⊢ ( ¬ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) → ( 𝑇 We 𝑈 ↔ 𝑇 We ∅ ) ) |
| 235 |
225 234
|
mpbiri |
⊢ ( ¬ ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) → 𝑇 We 𝑈 ) |
| 236 |
224 235
|
pm2.61d1 |
⊢ ( 𝜑 → 𝑇 We 𝑈 ) |