| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oef1o.f |
⊢ ( 𝜑 → 𝐹 : 𝐴 –1-1-onto→ 𝐶 ) |
| 2 |
|
oef1o.g |
⊢ ( 𝜑 → 𝐺 : 𝐵 –1-1-onto→ 𝐷 ) |
| 3 |
|
oef1o.a |
⊢ ( 𝜑 → 𝐴 ∈ ( On ∖ 1o ) ) |
| 4 |
|
oef1o.b |
⊢ ( 𝜑 → 𝐵 ∈ On ) |
| 5 |
|
oef1o.c |
⊢ ( 𝜑 → 𝐶 ∈ On ) |
| 6 |
|
oef1o.d |
⊢ ( 𝜑 → 𝐷 ∈ On ) |
| 7 |
|
oef1o.z |
⊢ ( 𝜑 → ( 𝐹 ‘ ∅ ) = ∅ ) |
| 8 |
|
oef1o.k |
⊢ 𝐾 = ( 𝑦 ∈ { 𝑥 ∈ ( 𝐴 ↑m 𝐵 ) ∣ 𝑥 finSupp ∅ } ↦ ( 𝐹 ∘ ( 𝑦 ∘ ◡ 𝐺 ) ) ) |
| 9 |
|
oef1o.h |
⊢ 𝐻 = ( ( ( 𝐶 CNF 𝐷 ) ∘ 𝐾 ) ∘ ◡ ( 𝐴 CNF 𝐵 ) ) |
| 10 |
|
eqid |
⊢ dom ( 𝐶 CNF 𝐷 ) = dom ( 𝐶 CNF 𝐷 ) |
| 11 |
10 5 6
|
cantnff1o |
⊢ ( 𝜑 → ( 𝐶 CNF 𝐷 ) : dom ( 𝐶 CNF 𝐷 ) –1-1-onto→ ( 𝐶 ↑o 𝐷 ) ) |
| 12 |
|
eqid |
⊢ { 𝑥 ∈ ( 𝐴 ↑m 𝐵 ) ∣ 𝑥 finSupp ∅ } = { 𝑥 ∈ ( 𝐴 ↑m 𝐵 ) ∣ 𝑥 finSupp ∅ } |
| 13 |
|
eqid |
⊢ { 𝑥 ∈ ( 𝐶 ↑m 𝐷 ) ∣ 𝑥 finSupp ( 𝐹 ‘ ∅ ) } = { 𝑥 ∈ ( 𝐶 ↑m 𝐷 ) ∣ 𝑥 finSupp ( 𝐹 ‘ ∅ ) } |
| 14 |
|
eqid |
⊢ ( 𝐹 ‘ ∅ ) = ( 𝐹 ‘ ∅ ) |
| 15 |
|
f1ocnv |
⊢ ( 𝐺 : 𝐵 –1-1-onto→ 𝐷 → ◡ 𝐺 : 𝐷 –1-1-onto→ 𝐵 ) |
| 16 |
2 15
|
syl |
⊢ ( 𝜑 → ◡ 𝐺 : 𝐷 –1-1-onto→ 𝐵 ) |
| 17 |
|
ondif1 |
⊢ ( 𝐴 ∈ ( On ∖ 1o ) ↔ ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) ) |
| 18 |
17
|
simprbi |
⊢ ( 𝐴 ∈ ( On ∖ 1o ) → ∅ ∈ 𝐴 ) |
| 19 |
3 18
|
syl |
⊢ ( 𝜑 → ∅ ∈ 𝐴 ) |
| 20 |
12 13 14 16 1 4 3 6 5 19
|
mapfien |
⊢ ( 𝜑 → ( 𝑦 ∈ { 𝑥 ∈ ( 𝐴 ↑m 𝐵 ) ∣ 𝑥 finSupp ∅ } ↦ ( 𝐹 ∘ ( 𝑦 ∘ ◡ 𝐺 ) ) ) : { 𝑥 ∈ ( 𝐴 ↑m 𝐵 ) ∣ 𝑥 finSupp ∅ } –1-1-onto→ { 𝑥 ∈ ( 𝐶 ↑m 𝐷 ) ∣ 𝑥 finSupp ( 𝐹 ‘ ∅ ) } ) |
| 21 |
|
f1oeq1 |
⊢ ( 𝐾 = ( 𝑦 ∈ { 𝑥 ∈ ( 𝐴 ↑m 𝐵 ) ∣ 𝑥 finSupp ∅ } ↦ ( 𝐹 ∘ ( 𝑦 ∘ ◡ 𝐺 ) ) ) → ( 𝐾 : { 𝑥 ∈ ( 𝐴 ↑m 𝐵 ) ∣ 𝑥 finSupp ∅ } –1-1-onto→ { 𝑥 ∈ ( 𝐶 ↑m 𝐷 ) ∣ 𝑥 finSupp ( 𝐹 ‘ ∅ ) } ↔ ( 𝑦 ∈ { 𝑥 ∈ ( 𝐴 ↑m 𝐵 ) ∣ 𝑥 finSupp ∅ } ↦ ( 𝐹 ∘ ( 𝑦 ∘ ◡ 𝐺 ) ) ) : { 𝑥 ∈ ( 𝐴 ↑m 𝐵 ) ∣ 𝑥 finSupp ∅ } –1-1-onto→ { 𝑥 ∈ ( 𝐶 ↑m 𝐷 ) ∣ 𝑥 finSupp ( 𝐹 ‘ ∅ ) } ) ) |
| 22 |
8 21
|
ax-mp |
⊢ ( 𝐾 : { 𝑥 ∈ ( 𝐴 ↑m 𝐵 ) ∣ 𝑥 finSupp ∅ } –1-1-onto→ { 𝑥 ∈ ( 𝐶 ↑m 𝐷 ) ∣ 𝑥 finSupp ( 𝐹 ‘ ∅ ) } ↔ ( 𝑦 ∈ { 𝑥 ∈ ( 𝐴 ↑m 𝐵 ) ∣ 𝑥 finSupp ∅ } ↦ ( 𝐹 ∘ ( 𝑦 ∘ ◡ 𝐺 ) ) ) : { 𝑥 ∈ ( 𝐴 ↑m 𝐵 ) ∣ 𝑥 finSupp ∅ } –1-1-onto→ { 𝑥 ∈ ( 𝐶 ↑m 𝐷 ) ∣ 𝑥 finSupp ( 𝐹 ‘ ∅ ) } ) |
| 23 |
20 22
|
sylibr |
⊢ ( 𝜑 → 𝐾 : { 𝑥 ∈ ( 𝐴 ↑m 𝐵 ) ∣ 𝑥 finSupp ∅ } –1-1-onto→ { 𝑥 ∈ ( 𝐶 ↑m 𝐷 ) ∣ 𝑥 finSupp ( 𝐹 ‘ ∅ ) } ) |
| 24 |
|
eqid |
⊢ { 𝑥 ∈ ( 𝐶 ↑m 𝐷 ) ∣ 𝑥 finSupp ∅ } = { 𝑥 ∈ ( 𝐶 ↑m 𝐷 ) ∣ 𝑥 finSupp ∅ } |
| 25 |
24 5 6
|
cantnfdm |
⊢ ( 𝜑 → dom ( 𝐶 CNF 𝐷 ) = { 𝑥 ∈ ( 𝐶 ↑m 𝐷 ) ∣ 𝑥 finSupp ∅ } ) |
| 26 |
7
|
breq2d |
⊢ ( 𝜑 → ( 𝑥 finSupp ( 𝐹 ‘ ∅ ) ↔ 𝑥 finSupp ∅ ) ) |
| 27 |
26
|
rabbidv |
⊢ ( 𝜑 → { 𝑥 ∈ ( 𝐶 ↑m 𝐷 ) ∣ 𝑥 finSupp ( 𝐹 ‘ ∅ ) } = { 𝑥 ∈ ( 𝐶 ↑m 𝐷 ) ∣ 𝑥 finSupp ∅ } ) |
| 28 |
25 27
|
eqtr4d |
⊢ ( 𝜑 → dom ( 𝐶 CNF 𝐷 ) = { 𝑥 ∈ ( 𝐶 ↑m 𝐷 ) ∣ 𝑥 finSupp ( 𝐹 ‘ ∅ ) } ) |
| 29 |
28
|
f1oeq3d |
⊢ ( 𝜑 → ( 𝐾 : { 𝑥 ∈ ( 𝐴 ↑m 𝐵 ) ∣ 𝑥 finSupp ∅ } –1-1-onto→ dom ( 𝐶 CNF 𝐷 ) ↔ 𝐾 : { 𝑥 ∈ ( 𝐴 ↑m 𝐵 ) ∣ 𝑥 finSupp ∅ } –1-1-onto→ { 𝑥 ∈ ( 𝐶 ↑m 𝐷 ) ∣ 𝑥 finSupp ( 𝐹 ‘ ∅ ) } ) ) |
| 30 |
23 29
|
mpbird |
⊢ ( 𝜑 → 𝐾 : { 𝑥 ∈ ( 𝐴 ↑m 𝐵 ) ∣ 𝑥 finSupp ∅ } –1-1-onto→ dom ( 𝐶 CNF 𝐷 ) ) |
| 31 |
3
|
eldifad |
⊢ ( 𝜑 → 𝐴 ∈ On ) |
| 32 |
12 31 4
|
cantnfdm |
⊢ ( 𝜑 → dom ( 𝐴 CNF 𝐵 ) = { 𝑥 ∈ ( 𝐴 ↑m 𝐵 ) ∣ 𝑥 finSupp ∅ } ) |
| 33 |
32
|
f1oeq2d |
⊢ ( 𝜑 → ( 𝐾 : dom ( 𝐴 CNF 𝐵 ) –1-1-onto→ dom ( 𝐶 CNF 𝐷 ) ↔ 𝐾 : { 𝑥 ∈ ( 𝐴 ↑m 𝐵 ) ∣ 𝑥 finSupp ∅ } –1-1-onto→ dom ( 𝐶 CNF 𝐷 ) ) ) |
| 34 |
30 33
|
mpbird |
⊢ ( 𝜑 → 𝐾 : dom ( 𝐴 CNF 𝐵 ) –1-1-onto→ dom ( 𝐶 CNF 𝐷 ) ) |
| 35 |
|
f1oco |
⊢ ( ( ( 𝐶 CNF 𝐷 ) : dom ( 𝐶 CNF 𝐷 ) –1-1-onto→ ( 𝐶 ↑o 𝐷 ) ∧ 𝐾 : dom ( 𝐴 CNF 𝐵 ) –1-1-onto→ dom ( 𝐶 CNF 𝐷 ) ) → ( ( 𝐶 CNF 𝐷 ) ∘ 𝐾 ) : dom ( 𝐴 CNF 𝐵 ) –1-1-onto→ ( 𝐶 ↑o 𝐷 ) ) |
| 36 |
11 34 35
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐶 CNF 𝐷 ) ∘ 𝐾 ) : dom ( 𝐴 CNF 𝐵 ) –1-1-onto→ ( 𝐶 ↑o 𝐷 ) ) |
| 37 |
|
eqid |
⊢ dom ( 𝐴 CNF 𝐵 ) = dom ( 𝐴 CNF 𝐵 ) |
| 38 |
37 31 4
|
cantnff1o |
⊢ ( 𝜑 → ( 𝐴 CNF 𝐵 ) : dom ( 𝐴 CNF 𝐵 ) –1-1-onto→ ( 𝐴 ↑o 𝐵 ) ) |
| 39 |
|
f1ocnv |
⊢ ( ( 𝐴 CNF 𝐵 ) : dom ( 𝐴 CNF 𝐵 ) –1-1-onto→ ( 𝐴 ↑o 𝐵 ) → ◡ ( 𝐴 CNF 𝐵 ) : ( 𝐴 ↑o 𝐵 ) –1-1-onto→ dom ( 𝐴 CNF 𝐵 ) ) |
| 40 |
38 39
|
syl |
⊢ ( 𝜑 → ◡ ( 𝐴 CNF 𝐵 ) : ( 𝐴 ↑o 𝐵 ) –1-1-onto→ dom ( 𝐴 CNF 𝐵 ) ) |
| 41 |
|
f1oco |
⊢ ( ( ( ( 𝐶 CNF 𝐷 ) ∘ 𝐾 ) : dom ( 𝐴 CNF 𝐵 ) –1-1-onto→ ( 𝐶 ↑o 𝐷 ) ∧ ◡ ( 𝐴 CNF 𝐵 ) : ( 𝐴 ↑o 𝐵 ) –1-1-onto→ dom ( 𝐴 CNF 𝐵 ) ) → ( ( ( 𝐶 CNF 𝐷 ) ∘ 𝐾 ) ∘ ◡ ( 𝐴 CNF 𝐵 ) ) : ( 𝐴 ↑o 𝐵 ) –1-1-onto→ ( 𝐶 ↑o 𝐷 ) ) |
| 42 |
36 40 41
|
syl2anc |
⊢ ( 𝜑 → ( ( ( 𝐶 CNF 𝐷 ) ∘ 𝐾 ) ∘ ◡ ( 𝐴 CNF 𝐵 ) ) : ( 𝐴 ↑o 𝐵 ) –1-1-onto→ ( 𝐶 ↑o 𝐷 ) ) |
| 43 |
|
f1oeq1 |
⊢ ( 𝐻 = ( ( ( 𝐶 CNF 𝐷 ) ∘ 𝐾 ) ∘ ◡ ( 𝐴 CNF 𝐵 ) ) → ( 𝐻 : ( 𝐴 ↑o 𝐵 ) –1-1-onto→ ( 𝐶 ↑o 𝐷 ) ↔ ( ( ( 𝐶 CNF 𝐷 ) ∘ 𝐾 ) ∘ ◡ ( 𝐴 CNF 𝐵 ) ) : ( 𝐴 ↑o 𝐵 ) –1-1-onto→ ( 𝐶 ↑o 𝐷 ) ) ) |
| 44 |
9 43
|
ax-mp |
⊢ ( 𝐻 : ( 𝐴 ↑o 𝐵 ) –1-1-onto→ ( 𝐶 ↑o 𝐷 ) ↔ ( ( ( 𝐶 CNF 𝐷 ) ∘ 𝐾 ) ∘ ◡ ( 𝐴 CNF 𝐵 ) ) : ( 𝐴 ↑o 𝐵 ) –1-1-onto→ ( 𝐶 ↑o 𝐷 ) ) |
| 45 |
42 44
|
sylibr |
⊢ ( 𝜑 → 𝐻 : ( 𝐴 ↑o 𝐵 ) –1-1-onto→ ( 𝐶 ↑o 𝐷 ) ) |