Metamath Proof Explorer


Theorem oif

Description: The order isomorphism of the well-order R on A is a function. (Contributed by Mario Carneiro, 23-May-2015)

Ref Expression
Hypothesis oicl.1 F=OrdIsoRA
Assertion oif F:domFA

Proof

Step Hyp Ref Expression
1 oicl.1 F=OrdIsoRA
2 eqid recshVιvwA|jranhjRw|uwA|jranhjRw¬uRv=recshVιvwA|jranhjRw|uwA|jranhjRw¬uRv
3 eqid wA|jranhjRw=wA|jranhjRw
4 eqid hVιvwA|jranhjRw|uwA|jranhjRw¬uRv=hVιvwA|jranhjRw|uwA|jranhjRw¬uRv
5 2 3 4 ordtypecbv recsfVιsyA|iranfiRy|ryA|iranfiRy¬rRs=recshVιvwA|jranhjRw|uwA|jranhjRw¬uRv
6 eqid xOn|tAzrecsfVιsyA|iranfiRy|ryA|iranfiRy¬rRsxzRt=xOn|tAzrecsfVιsyA|iranfiRy|ryA|iranfiRy¬rRsxzRt
7 simpl RWeARSeARWeA
8 simpr RWeARSeARSeA
9 5 3 4 6 1 7 8 ordtypelem5 RWeARSeAOrddomFF:domFA
10 9 simprd RWeARSeAF:domFA
11 f0 :A
12 1 oi0 ¬RWeARSeAF=
13 12 dmeqd ¬RWeARSeAdomF=dom
14 dm0 dom=
15 13 14 eqtrdi ¬RWeARSeAdomF=
16 12 15 feq12d ¬RWeARSeAF:domFA:A
17 11 16 mpbiri ¬RWeARSeAF:domFA
18 10 17 pm2.61i F:domFA