Metamath Proof Explorer


Theorem caov12d

Description: Rearrange arguments in a commutative, associative operation. (Contributed by NM, 26-Aug-1995) (Revised by Mario Carneiro, 30-Dec-2014)

Ref Expression
Hypotheses caovd.1 φAS
caovd.2 φBS
caovd.3 φCS
caovd.com φxSySxFy=yFx
caovd.ass φxSySzSxFyFz=xFyFz
Assertion caov12d φAFBFC=BFAFC

Proof

Step Hyp Ref Expression
1 caovd.1 φAS
2 caovd.2 φBS
3 caovd.3 φCS
4 caovd.com φxSySxFy=yFx
5 caovd.ass φxSySzSxFyFz=xFyFz
6 4 1 2 caovcomd φAFB=BFA
7 6 oveq1d φAFBFC=BFAFC
8 5 1 2 3 caovassd φAFBFC=AFBFC
9 5 2 1 3 caovassd φBFAFC=BFAFC
10 7 8 9 3eqtr3d φAFBFC=BFAFC