Metamath Proof Explorer


Theorem caovcomg

Description: Convert an operation commutative law to class notation. (Contributed by Mario Carneiro, 1-Jun-2013)

Ref Expression
Hypothesis caovcomg.1 φxSySxFy=yFx
Assertion caovcomg φASBSAFB=BFA

Proof

Step Hyp Ref Expression
1 caovcomg.1 φxSySxFy=yFx
2 1 ralrimivva φxSySxFy=yFx
3 oveq1 x=AxFy=AFy
4 oveq2 x=AyFx=yFA
5 3 4 eqeq12d x=AxFy=yFxAFy=yFA
6 oveq2 y=BAFy=AFB
7 oveq1 y=ByFA=BFA
8 6 7 eqeq12d y=BAFy=yFAAFB=BFA
9 5 8 rspc2v ASBSxSySxFy=yFxAFB=BFA
10 2 9 mpan9 φASBSAFB=BFA