Metamath Proof Explorer


Theorem caovdir2d

Description: Convert an operation distributive law to class notation. (Contributed by Mario Carneiro, 30-Dec-2014)

Ref Expression
Hypotheses caovdir2d.1 φxSySzSxGyFz=xGyFxGz
caovdir2d.2 φAS
caovdir2d.3 φBS
caovdir2d.4 φCS
caovdir2d.cl φxSySxFyS
caovdir2d.com φxSySxGy=yGx
Assertion caovdir2d φAFBGC=AGCFBGC

Proof

Step Hyp Ref Expression
1 caovdir2d.1 φxSySzSxGyFz=xGyFxGz
2 caovdir2d.2 φAS
3 caovdir2d.3 φBS
4 caovdir2d.4 φCS
5 caovdir2d.cl φxSySxFyS
6 caovdir2d.com φxSySxGy=yGx
7 1 4 2 3 caovdid φCGAFB=CGAFCGB
8 5 2 3 caovcld φAFBS
9 6 8 4 caovcomd φAFBGC=CGAFB
10 6 2 4 caovcomd φAGC=CGA
11 6 3 4 caovcomd φBGC=CGB
12 10 11 oveq12d φAGCFBGC=CGAFCGB
13 7 9 12 3eqtr4d φAFBGC=AGCFBGC