| Step |
Hyp |
Ref |
Expression |
| 1 |
|
caovdir2d.1 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ) → ( 𝑥 𝐺 ( 𝑦 𝐹 𝑧 ) ) = ( ( 𝑥 𝐺 𝑦 ) 𝐹 ( 𝑥 𝐺 𝑧 ) ) ) |
| 2 |
|
caovdir2d.2 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑆 ) |
| 3 |
|
caovdir2d.3 |
⊢ ( 𝜑 → 𝐵 ∈ 𝑆 ) |
| 4 |
|
caovdir2d.4 |
⊢ ( 𝜑 → 𝐶 ∈ 𝑆 ) |
| 5 |
|
caovdir2d.cl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 𝐹 𝑦 ) ∈ 𝑆 ) |
| 6 |
|
caovdir2d.com |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 𝐺 𝑦 ) = ( 𝑦 𝐺 𝑥 ) ) |
| 7 |
1 4 2 3
|
caovdid |
⊢ ( 𝜑 → ( 𝐶 𝐺 ( 𝐴 𝐹 𝐵 ) ) = ( ( 𝐶 𝐺 𝐴 ) 𝐹 ( 𝐶 𝐺 𝐵 ) ) ) |
| 8 |
5 2 3
|
caovcld |
⊢ ( 𝜑 → ( 𝐴 𝐹 𝐵 ) ∈ 𝑆 ) |
| 9 |
6 8 4
|
caovcomd |
⊢ ( 𝜑 → ( ( 𝐴 𝐹 𝐵 ) 𝐺 𝐶 ) = ( 𝐶 𝐺 ( 𝐴 𝐹 𝐵 ) ) ) |
| 10 |
6 2 4
|
caovcomd |
⊢ ( 𝜑 → ( 𝐴 𝐺 𝐶 ) = ( 𝐶 𝐺 𝐴 ) ) |
| 11 |
6 3 4
|
caovcomd |
⊢ ( 𝜑 → ( 𝐵 𝐺 𝐶 ) = ( 𝐶 𝐺 𝐵 ) ) |
| 12 |
10 11
|
oveq12d |
⊢ ( 𝜑 → ( ( 𝐴 𝐺 𝐶 ) 𝐹 ( 𝐵 𝐺 𝐶 ) ) = ( ( 𝐶 𝐺 𝐴 ) 𝐹 ( 𝐶 𝐺 𝐵 ) ) ) |
| 13 |
7 9 12
|
3eqtr4d |
⊢ ( 𝜑 → ( ( 𝐴 𝐹 𝐵 ) 𝐺 𝐶 ) = ( ( 𝐴 𝐺 𝐶 ) 𝐹 ( 𝐵 𝐺 𝐶 ) ) ) |