Metamath Proof Explorer


Theorem cardidm

Description: The cardinality function is idempotent. Proposition 10.11 of TakeutiZaring p. 85. (Contributed by Mario Carneiro, 7-Jan-2013)

Ref Expression
Assertion cardidm cardcardA=cardA

Proof

Step Hyp Ref Expression
1 cardid2 AdomcardcardAA
2 1 ensymd AdomcardAcardA
3 entr yAAcardAycardA
4 3 expcom AcardAyAycardA
5 2 4 syl AdomcardyAycardA
6 entr ycardAcardAAyA
7 6 expcom cardAAycardAyA
8 1 7 syl AdomcardycardAyA
9 5 8 impbid AdomcardyAycardA
10 9 rabbidv AdomcardyOn|yA=yOn|ycardA
11 10 inteqd AdomcardyOn|yA=yOn|ycardA
12 cardval3 AdomcardcardA=yOn|yA
13 cardon cardAOn
14 oncardval cardAOncardcardA=yOn|ycardA
15 13 14 mp1i AdomcardcardcardA=yOn|ycardA
16 11 12 15 3eqtr4rd AdomcardcardcardA=cardA
17 card0 card=
18 ndmfv ¬AdomcardcardA=
19 18 fveq2d ¬AdomcardcardcardA=card
20 17 19 18 3eqtr4a ¬AdomcardcardcardA=cardA
21 16 20 pm2.61i cardcardA=cardA