Metamath Proof Explorer


Theorem cardnn

Description: The cardinality of a natural number is the number. Corollary 10.23 of TakeutiZaring p. 90. (Contributed by Mario Carneiro, 7-Jan-2013)

Ref Expression
Assertion cardnn AωcardA=A

Proof

Step Hyp Ref Expression
1 nnon AωAOn
2 onenon AOnAdomcard
3 cardid2 AdomcardcardAA
4 1 2 3 3syl AωcardAA
5 nnfi AωAFin
6 ficardom AFincardAω
7 5 6 syl AωcardAω
8 nneneq cardAωAωcardAAcardA=A
9 7 8 mpancom AωcardAAcardA=A
10 4 9 mpbid AωcardA=A