Metamath Proof Explorer


Theorem cases2ALT

Description: Alternate proof of cases2 , not using dedlema or dedlemb . (Contributed by BJ, 6-Apr-2019) (Proof shortened by Wolf Lammen, 2-Jan-2020) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion cases2ALT φψ¬φχφψ¬φχ

Proof

Step Hyp Ref Expression
1 pm3.4 φψφψ
2 pm2.24 φ¬φχ
3 2 adantr φψ¬φχ
4 1 3 jca φψφψ¬φχ
5 pm2.21 ¬φφψ
6 5 adantr ¬φχφψ
7 pm3.4 ¬φχ¬φχ
8 6 7 jca ¬φχφψ¬φχ
9 4 8 jaoi φψ¬φχφψ¬φχ
10 pm2.27 φφψψ
11 10 imdistani φφψφψ
12 11 orcd φφψφψ¬φχ
13 12 adantrr φφψ¬φχφψ¬φχ
14 pm2.27 ¬φ¬φχχ
15 14 imdistani ¬φ¬φχ¬φχ
16 15 olcd ¬φ¬φχφψ¬φχ
17 16 adantrl ¬φφψ¬φχφψ¬φχ
18 13 17 pm2.61ian φψ¬φχφψ¬φχ
19 9 18 impbii φψ¬φχφψ¬φχ