Metamath Proof Explorer


Theorem catcinv

Description: The property " F is an inverse of G " in a category of small categories (in a universe). (Contributed by Zhi Wang, 14-Nov-2025)

Ref Expression
Hypotheses catcinv.c C = CatCat U
catcinv.n N = Inv C
catcinv.h H = Hom C
catcinv.i I = id func X
catcinv.j J = id func Y
Assertion catcinv F X N Y G F X H Y G Y H X G func F = I F func G = J

Proof

Step Hyp Ref Expression
1 catcinv.c C = CatCat U
2 catcinv.n N = Inv C
3 catcinv.h H = Hom C
4 catcinv.i I = id func X
5 catcinv.j J = id func Y
6 eqid Sect C = Sect C
7 1 3 4 6 catcsect F X Sect C Y G F X H Y G Y H X G func F = I
8 1 3 5 6 catcsect G Y Sect C X F G Y H X F X H Y F func G = J
9 ancom G Y H X F X H Y F X H Y G Y H X
10 8 9 bianbi G Y Sect C X F F X H Y G Y H X F func G = J
11 7 10 anbi12i F X Sect C Y G G Y Sect C X F F X H Y G Y H X G func F = I F X H Y G Y H X F func G = J
12 2 6 isinv2 F X N Y G F X Sect C Y G G Y Sect C X F
13 anandi F X H Y G Y H X G func F = I F func G = J F X H Y G Y H X G func F = I F X H Y G Y H X F func G = J
14 11 12 13 3bitr4i F X N Y G F X H Y G Y H X G func F = I F func G = J