Metamath Proof Explorer


Theorem catcrcl

Description: Reverse closure for the category of categories (in a universe) (Contributed by Zhi Wang, 14-Nov-2025)

Ref Expression
Hypotheses catcrcl.c C = CatCat U
catcrcl.h H = Hom C
catcrcl.f φ F X H Y
Assertion catcrcl φ U V

Proof

Step Hyp Ref Expression
1 catcrcl.c C = CatCat U
2 catcrcl.h H = Hom C
3 catcrcl.f φ F X H Y
4 elfvne0 F H X Y H
5 df-ov X H Y = H X Y
6 4 5 eleq2s F X H Y H
7 fvprc ¬ U V CatCat U =
8 1 7 eqtrid ¬ U V C =
9 fveq2 C = Hom C = Hom
10 homid Hom = Slot Hom ndx
11 10 str0 = Hom
12 9 2 11 3eqtr4g C = H =
13 8 12 syl ¬ U V H =
14 13 necon1ai H U V
15 3 6 14 3syl φ U V