Metamath Proof Explorer


Theorem cbv1v

Description: Rule used to change bound variables, using implicit substitution. Version of cbv1 with a disjoint variable condition, which does not require ax-13 . (Contributed by NM, 5-Aug-1993) (Revised by BJ, 16-Jun-2019)

Ref Expression
Hypotheses cbv1v.1 xφ
cbv1v.2 yφ
cbv1v.3 φyψ
cbv1v.4 φxχ
cbv1v.5 φx=yψχ
Assertion cbv1v φxψyχ

Proof

Step Hyp Ref Expression
1 cbv1v.1 xφ
2 cbv1v.2 yφ
3 cbv1v.3 φyψ
4 cbv1v.4 φxχ
5 cbv1v.5 φx=yψχ
6 2 3 nfim1 yφψ
7 1 4 nfim1 xφχ
8 5 com12 x=yφψχ
9 8 a2d x=yφψφχ
10 6 7 9 cbv3v xφψyφχ
11 1 19.21 xφψφxψ
12 2 19.21 yφχφyχ
13 10 11 12 3imtr3i φxψφyχ
14 13 pm2.86i φxψyχ