Metamath Proof Explorer


Theorem cbvabv

Description: Rule used to change bound variables, using implicit substitution. Version of cbvab with disjoint variable conditions requiring fewer axioms. (Contributed by NM, 26-May-1999) Require x , y be disjoint to avoid ax-11 and ax-13 . (Revised by Steven Nguyen, 4-Dec-2022)

Ref Expression
Hypothesis cbvabv.1 x=yφψ
Assertion cbvabv x|φ=y|ψ

Proof

Step Hyp Ref Expression
1 cbvabv.1 x=yφψ
2 1 cbvsbv zxφzyψ
3 df-clab zx|φzxφ
4 df-clab zy|ψzyψ
5 2 3 4 3bitr4i zx|φzy|ψ
6 5 eqriv x|φ=y|ψ