Metamath Proof Explorer


Theorem cbvcsbvw2

Description: Change bound variable of a proper substitution into a class using implicit substitution. General version of cbvcsbv . (Contributed by GG, 1-Sep-2025)

Ref Expression
Hypotheses cbvcsbvw2.1 A = B
cbvcsbvw2.2 x = y C = D
Assertion cbvcsbvw2 A / x C = B / y D

Proof

Step Hyp Ref Expression
1 cbvcsbvw2.1 A = B
2 cbvcsbvw2.2 x = y C = D
3 2 eleq2d x = y t C t D
4 1 3 cbvsbcvw2 [˙A / x]˙ t C [˙B / y]˙ t D
5 4 abbii t | [˙A / x]˙ t C = t | [˙B / y]˙ t D
6 df-csb A / x C = t | [˙A / x]˙ t C
7 df-csb B / y D = t | [˙B / y]˙ t D
8 5 6 7 3eqtr4i A / x C = B / y D