Metamath Proof Explorer


Theorem cbvditg

Description: Change bound variable in a directed integral. (Contributed by Mario Carneiro, 7-Sep-2014)

Ref Expression
Hypotheses cbvditg.1 x = y C = D
cbvditg.2 _ y C
cbvditg.3 _ x D
Assertion cbvditg A B C dx = A B D dy

Proof

Step Hyp Ref Expression
1 cbvditg.1 x = y C = D
2 cbvditg.2 _ y C
3 cbvditg.3 _ x D
4 biid A B A B
5 1 2 3 cbvitg A B C dx = A B D dy
6 1 2 3 cbvitg B A C dx = B A D dy
7 6 negeqi B A C dx = B A D dy
8 4 5 7 ifbieq12i if A B A B C dx B A C dx = if A B A B D dy B A D dy
9 df-ditg A B C dx = if A B A B C dx B A C dx
10 df-ditg A B D dy = if A B A B D dy B A D dy
11 8 9 10 3eqtr4i A B C dx = A B D dy