Metamath Proof Explorer


Theorem cbvditgvw2

Description: Change bound variable and domain in a directed integral, using implicit substitution. (Contributed by GG, 1-Sep-2025)

Ref Expression
Hypotheses cbvditgvw2.1 A = B
cbvditgvw2.2 C = D
cbvditgvw2.3 x = y E = F
Assertion cbvditgvw2 A C E dx = B D F dy

Proof

Step Hyp Ref Expression
1 cbvditgvw2.1 A = B
2 cbvditgvw2.2 C = D
3 cbvditgvw2.3 x = y E = F
4 1 2 breq12i A C B D
5 1 2 oveq12i A C = B D
6 5 a1i x = y A C = B D
7 3 6 cbvitgvw2 A C E dx = B D F dy
8 2 a1i x = y C = D
9 1 a1i x = y A = B
10 8 9 oveq12d x = y C A = D B
11 3 10 cbvitgvw2 C A E dx = D B F dy
12 11 negeqi C A E dx = D B F dy
13 4 7 12 ifbieq12i if A C A C E dx C A E dx = if B D B D F dy D B F dy
14 df-ditg A C E dx = if A C A C E dx C A E dx
15 df-ditg B D F dy = if B D B D F dy D B F dy
16 13 14 15 3eqtr4i A C E dx = B D F dy