Metamath Proof Explorer


Theorem cbviindavw2

Description: Change bound variable and domain in indexed intersections. Deduction form. (Contributed by GG, 14-Aug-2025)

Ref Expression
Hypotheses cbviindavw2.1 φ x = y C = D
cbviindavw2.2 φ x = y A = B
Assertion cbviindavw2 φ x A C = y B D

Proof

Step Hyp Ref Expression
1 cbviindavw2.1 φ x = y C = D
2 cbviindavw2.2 φ x = y A = B
3 1 eleq2d φ x = y t C t D
4 3 2 cbvraldva2 φ x A t C y B t D
5 4 abbidv φ t | x A t C = t | y B t D
6 df-iin x A C = t | x A t C
7 df-iin y B D = t | y B t D
8 5 6 7 3eqtr4g φ x A C = y B D