Metamath Proof Explorer


Theorem cbvmpo2davw2

Description: Change second bound variable and domains in a maps-to function. Deduction form. (Contributed by GG, 14-Aug-2025)

Ref Expression
Hypotheses cbvmpo2davw2.1 φ y = z E = F
cbvmpo2davw2.2 φ y = z C = D
cbvmpo2davw2.3 φ y = z A = B
Assertion cbvmpo2davw2 φ x A , y C E = x B , z D F

Proof

Step Hyp Ref Expression
1 cbvmpo2davw2.1 φ y = z E = F
2 cbvmpo2davw2.2 φ y = z C = D
3 cbvmpo2davw2.3 φ y = z A = B
4 3 eleq2d φ y = z x A x B
5 simpr φ y = z y = z
6 5 2 eleq12d φ y = z y C z D
7 4 6 anbi12d φ y = z x A y C x B z D
8 1 eqeq2d φ y = z t = E t = F
9 7 8 anbi12d φ y = z x A y C t = E x B z D t = F
10 9 cbvoprab2davw φ x y t | x A y C t = E = x z t | x B z D t = F
11 df-mpo x A , y C E = x y t | x A y C t = E
12 df-mpo x B , z D F = x z t | x B z D t = F
13 10 11 12 3eqtr4g φ x A , y C E = x B , z D F