Metamath Proof Explorer


Theorem cbvoprab123davw

Description: Change all bound variables in an operation abstraction. Deduction form. (Contributed by GG, 14-Aug-2025)

Ref Expression
Hypothesis cbvoprab123davw.1 φ x = w y = u z = v ψ χ
Assertion cbvoprab123davw φ x y z | ψ = w u v | χ

Proof

Step Hyp Ref Expression
1 cbvoprab123davw.1 φ x = w y = u z = v ψ χ
2 simplr φ x = w y = u x = w
3 simpr φ x = w y = u y = u
4 2 3 opeq12d φ x = w y = u x y = w u
5 4 adantr φ x = w y = u z = v x y = w u
6 simpr φ x = w y = u z = v z = v
7 5 6 opeq12d φ x = w y = u z = v x y z = w u v
8 7 eqeq2d φ x = w y = u z = v t = x y z t = w u v
9 8 1 anbi12d φ x = w y = u z = v t = x y z ψ t = w u v χ
10 9 cbvexdvaw φ x = w y = u z t = x y z ψ v t = w u v χ
11 10 cbvexdvaw φ x = w y z t = x y z ψ u v t = w u v χ
12 11 cbvexdvaw φ x y z t = x y z ψ w u v t = w u v χ
13 12 abbidv φ t | x y z t = x y z ψ = t | w u v t = w u v χ
14 df-oprab x y z | ψ = t | x y z t = x y z ψ
15 df-oprab w u v | χ = t | w u v t = w u v χ
16 13 14 15 3eqtr4g φ x y z | ψ = w u v | χ