Metamath Proof Explorer


Theorem cbvoprab1vw

Description: Change the first bound variable in an operation abstraction, using implicit substitution. (Contributed by GG, 14-Aug-2025)

Ref Expression
Hypothesis cbvoprab1vw.1 x = w ψ χ
Assertion cbvoprab1vw x y z | ψ = w y z | χ

Proof

Step Hyp Ref Expression
1 cbvoprab1vw.1 x = w ψ χ
2 opeq1 x = w x y = w y
3 2 opeq1d x = w x y z = w y z
4 3 eqeq2d x = w t = x y z t = w y z
5 4 1 anbi12d x = w t = x y z ψ t = w y z χ
6 5 2exbidv x = w y z t = x y z ψ y z t = w y z χ
7 6 cbvexvw x y z t = x y z ψ w y z t = w y z χ
8 7 abbii t | x y z t = x y z ψ = t | w y z t = w y z χ
9 df-oprab x y z | ψ = t | x y z t = x y z ψ
10 df-oprab w y z | χ = t | w y z t = w y z χ
11 8 9 10 3eqtr4i x y z | ψ = w y z | χ