Metamath Proof Explorer


Theorem cbvoprab3

Description: Rule used to change the third bound variable in an operation abstraction, using implicit substitution. (Contributed by NM, 22-Aug-2013)

Ref Expression
Hypotheses cbvoprab3.1 wφ
cbvoprab3.2 zψ
cbvoprab3.3 z=wφψ
Assertion cbvoprab3 xyz|φ=xyw|ψ

Proof

Step Hyp Ref Expression
1 cbvoprab3.1 wφ
2 cbvoprab3.2 zψ
3 cbvoprab3.3 z=wφψ
4 nfv wv=xy
5 4 1 nfan wv=xyφ
6 5 nfex wyv=xyφ
7 6 nfex wxyv=xyφ
8 nfv zv=xy
9 8 2 nfan zv=xyψ
10 9 nfex zyv=xyψ
11 10 nfex zxyv=xyψ
12 3 anbi2d z=wv=xyφv=xyψ
13 12 2exbidv z=wxyv=xyφxyv=xyψ
14 7 11 13 cbvopab2 vz|xyv=xyφ=vw|xyv=xyψ
15 dfoprab2 xyz|φ=vz|xyv=xyφ
16 dfoprab2 xyw|ψ=vw|xyv=xyψ
17 14 15 16 3eqtr4i xyz|φ=xyw|ψ