Metamath Proof Explorer


Theorem cbvrab

Description: Rule to change the bound variable in a restricted class abstraction, using implicit substitution. This version has bound-variable hypotheses in place of distinct variable conditions. Usage of this theorem is discouraged because it depends on ax-13 . Use the weaker cbvrabw when possible. (Contributed by Andrew Salmon, 11-Jul-2011) (Revised by Mario Carneiro, 9-Oct-2016) (New usage is discouraged.)

Ref Expression
Hypotheses cbvrab.1 _xA
cbvrab.2 _yA
cbvrab.3 yφ
cbvrab.4 xψ
cbvrab.5 x=yφψ
Assertion cbvrab xA|φ=yA|ψ

Proof

Step Hyp Ref Expression
1 cbvrab.1 _xA
2 cbvrab.2 _yA
3 cbvrab.3 yφ
4 cbvrab.4 xψ
5 cbvrab.5 x=yφψ
6 nfv zxAφ
7 1 nfcri xzA
8 nfs1v xzxφ
9 7 8 nfan xzAzxφ
10 eleq1w x=zxAzA
11 sbequ12 x=zφzxφ
12 10 11 anbi12d x=zxAφzAzxφ
13 6 9 12 cbvab x|xAφ=z|zAzxφ
14 2 nfcri yzA
15 3 nfsb yzxφ
16 14 15 nfan yzAzxφ
17 nfv zyAψ
18 eleq1w z=yzAyA
19 sbequ z=yzxφyxφ
20 4 5 sbie yxφψ
21 19 20 bitrdi z=yzxφψ
22 18 21 anbi12d z=yzAzxφyAψ
23 16 17 22 cbvab z|zAzxφ=y|yAψ
24 13 23 eqtri x|xAφ=y|yAψ
25 df-rab xA|φ=x|xAφ
26 df-rab yA|ψ=y|yAψ
27 24 25 26 3eqtr4i xA|φ=yA|ψ