Metamath Proof Explorer


Theorem cbvralcsf

Description: A more general version of cbvralf that doesn't require A and B to be distinct from x or y . Changes bound variables using implicit substitution. Usage of this theorem is discouraged because it depends on ax-13 . (Contributed by Andrew Salmon, 13-Jul-2011) (New usage is discouraged.)

Ref Expression
Hypotheses cbvralcsf.1 _yA
cbvralcsf.2 _xB
cbvralcsf.3 yφ
cbvralcsf.4 xψ
cbvralcsf.5 x=yA=B
cbvralcsf.6 x=yφψ
Assertion cbvralcsf xAφyBψ

Proof

Step Hyp Ref Expression
1 cbvralcsf.1 _yA
2 cbvralcsf.2 _xB
3 cbvralcsf.3 yφ
4 cbvralcsf.4 xψ
5 cbvralcsf.5 x=yA=B
6 cbvralcsf.6 x=yφψ
7 nfv zxAφ
8 nfcsb1v _xz/xA
9 8 nfcri xzz/xA
10 nfsbc1v x[˙z/x]˙φ
11 9 10 nfim xzz/xA[˙z/x]˙φ
12 id x=zx=z
13 csbeq1a x=zA=z/xA
14 12 13 eleq12d x=zxAzz/xA
15 sbceq1a x=zφ[˙z/x]˙φ
16 14 15 imbi12d x=zxAφzz/xA[˙z/x]˙φ
17 7 11 16 cbvalv1 xxAφzzz/xA[˙z/x]˙φ
18 nfcv _yz
19 18 1 nfcsb _yz/xA
20 19 nfcri yzz/xA
21 18 3 nfsbc y[˙z/x]˙φ
22 20 21 nfim yzz/xA[˙z/x]˙φ
23 nfv zyBψ
24 id z=yz=y
25 csbeq1 z=yz/xA=y/xA
26 df-csb y/xA=v|[˙y/x]˙vA
27 2 nfcri xvB
28 5 eleq2d x=yvAvB
29 27 28 sbie yxvAvB
30 sbsbc yxvA[˙y/x]˙vA
31 29 30 bitr3i vB[˙y/x]˙vA
32 31 eqabi B=v|[˙y/x]˙vA
33 26 32 eqtr4i y/xA=B
34 25 33 eqtrdi z=yz/xA=B
35 24 34 eleq12d z=yzz/xAyB
36 dfsbcq z=y[˙z/x]˙φ[˙y/x]˙φ
37 sbsbc yxφ[˙y/x]˙φ
38 4 6 sbie yxφψ
39 37 38 bitr3i [˙y/x]˙φψ
40 36 39 bitrdi z=y[˙z/x]˙φψ
41 35 40 imbi12d z=yzz/xA[˙z/x]˙φyBψ
42 22 23 41 cbvalv1 zzz/xA[˙z/x]˙φyyBψ
43 17 42 bitri xxAφyyBψ
44 df-ral xAφxxAφ
45 df-ral yBψyyBψ
46 43 44 45 3bitr4i xAφyBψ