Metamath Proof Explorer


Theorem cbvralvw2

Description: Change bound variable and domain in the restricted universal quantifier, using implicit substitution. (Contributed by GG, 14-Aug-2025)

Ref Expression
Hypotheses cbvralvw2.1 x = y A = B
cbvralvw2.2 x = y φ ψ
Assertion cbvralvw2 x A φ y B ψ

Proof

Step Hyp Ref Expression
1 cbvralvw2.1 x = y A = B
2 cbvralvw2.2 x = y φ ψ
3 eleq1w x = y x A y A
4 1 eleq2d x = y y A y B
5 3 4 bitrd x = y x A y B
6 5 2 imbi12d x = y x A φ y B ψ
7 6 cbvalvw x x A φ y y B ψ
8 df-ral x A φ x x A φ
9 df-ral y B ψ y y B ψ
10 7 8 9 3bitr4i x A φ y B ψ