Metamath Proof Explorer


Theorem cbvreucsf

Description: A more general version of cbvreuv that has no distinct variable restrictions. Changes bound variables using implicit substitution. Usage of this theorem is discouraged because it depends on ax-13 . (Contributed by Andrew Salmon, 13-Jul-2011) (New usage is discouraged.)

Ref Expression
Hypotheses cbvralcsf.1 _yA
cbvralcsf.2 _xB
cbvralcsf.3 yφ
cbvralcsf.4 xψ
cbvralcsf.5 x=yA=B
cbvralcsf.6 x=yφψ
Assertion cbvreucsf ∃!xAφ∃!yBψ

Proof

Step Hyp Ref Expression
1 cbvralcsf.1 _yA
2 cbvralcsf.2 _xB
3 cbvralcsf.3 yφ
4 cbvralcsf.4 xψ
5 cbvralcsf.5 x=yA=B
6 cbvralcsf.6 x=yφψ
7 nfv zxAφ
8 nfcsb1v _xz/xA
9 8 nfcri xzz/xA
10 nfs1v xzxφ
11 9 10 nfan xzz/xAzxφ
12 id x=zx=z
13 csbeq1a x=zA=z/xA
14 12 13 eleq12d x=zxAzz/xA
15 sbequ12 x=zφzxφ
16 14 15 anbi12d x=zxAφzz/xAzxφ
17 7 11 16 cbveu ∃!xxAφ∃!zzz/xAzxφ
18 nfcv _yz
19 18 1 nfcsb _yz/xA
20 19 nfcri yzz/xA
21 3 nfsb yzxφ
22 20 21 nfan yzz/xAzxφ
23 nfv zyBψ
24 id z=yz=y
25 csbeq1 z=yz/xA=y/xA
26 sbsbc yxvA[˙y/x]˙vA
27 26 abbii v|yxvA=v|[˙y/x]˙vA
28 2 nfcri xvB
29 5 eleq2d x=yvAvB
30 28 29 sbie yxvAvB
31 30 bicomi vByxvA
32 31 eqabi B=v|yxvA
33 df-csb y/xA=v|[˙y/x]˙vA
34 27 32 33 3eqtr4ri y/xA=B
35 25 34 eqtrdi z=yz/xA=B
36 24 35 eleq12d z=yzz/xAyB
37 sbequ z=yzxφyxφ
38 4 6 sbie yxφψ
39 37 38 bitrdi z=yzxφψ
40 36 39 anbi12d z=yzz/xAzxφyBψ
41 22 23 40 cbveu ∃!zzz/xAzxφ∃!yyBψ
42 17 41 bitri ∃!xxAφ∃!yyBψ
43 df-reu ∃!xAφ∃!xxAφ
44 df-reu ∃!yBψ∃!yyBψ
45 42 43 44 3bitr4i ∃!xAφ∃!yBψ