Description: A more general version of cbvreuv that has no distinct variable restrictions. Changes bound variables using implicit substitution. Usage of this theorem is discouraged because it depends on ax-13 . (Contributed by Andrew Salmon, 13-Jul-2011) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | cbvralcsf.1 | |
|
cbvralcsf.2 | |
||
cbvralcsf.3 | |
||
cbvralcsf.4 | |
||
cbvralcsf.5 | |
||
cbvralcsf.6 | |
||
Assertion | cbvreucsf | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbvralcsf.1 | |
|
2 | cbvralcsf.2 | |
|
3 | cbvralcsf.3 | |
|
4 | cbvralcsf.4 | |
|
5 | cbvralcsf.5 | |
|
6 | cbvralcsf.6 | |
|
7 | nfv | |
|
8 | nfcsb1v | |
|
9 | 8 | nfcri | |
10 | nfs1v | |
|
11 | 9 10 | nfan | |
12 | id | |
|
13 | csbeq1a | |
|
14 | 12 13 | eleq12d | |
15 | sbequ12 | |
|
16 | 14 15 | anbi12d | |
17 | 7 11 16 | cbveu | |
18 | nfcv | |
|
19 | 18 1 | nfcsb | |
20 | 19 | nfcri | |
21 | 3 | nfsb | |
22 | 20 21 | nfan | |
23 | nfv | |
|
24 | id | |
|
25 | csbeq1 | |
|
26 | sbsbc | |
|
27 | 26 | abbii | |
28 | 2 | nfcri | |
29 | 5 | eleq2d | |
30 | 28 29 | sbie | |
31 | 30 | bicomi | |
32 | 31 | eqabi | |
33 | df-csb | |
|
34 | 27 32 33 | 3eqtr4ri | |
35 | 25 34 | eqtrdi | |
36 | 24 35 | eleq12d | |
37 | sbequ | |
|
38 | 4 6 | sbie | |
39 | 37 38 | bitrdi | |
40 | 36 39 | anbi12d | |
41 | 22 23 40 | cbveu | |
42 | 17 41 | bitri | |
43 | df-reu | |
|
44 | df-reu | |
|
45 | 42 43 44 | 3bitr4i | |