Metamath Proof Explorer


Theorem cbvrexdva2

Description: Rule used to change the bound variable in a restricted existential quantifier with implicit substitution which also changes the quantifier domain. Deduction form. (Contributed by David Moews, 1-May-2017) (Proof shortened by Wolf Lammen, 8-Jan-2025)

Ref Expression
Hypotheses cbvraldva2.1 φx=yψχ
cbvraldva2.2 φx=yA=B
Assertion cbvrexdva2 φxAψyBχ

Proof

Step Hyp Ref Expression
1 cbvraldva2.1 φx=yψχ
2 cbvraldva2.2 φx=yA=B
3 1 notbid φx=y¬ψ¬χ
4 3 2 cbvraldva2 φxA¬ψyB¬χ
5 ralnex xA¬ψ¬xAψ
6 ralnex yB¬χ¬yBχ
7 4 5 6 3bitr3g φ¬xAψ¬yBχ
8 7 con4bid φxAψyBχ