Metamath Proof Explorer


Theorem cbvriotavw2

Description: Change bound variable and domain in a restricted description binder, using implicit substitution. (Contributed by GG, 14-Aug-2025)

Ref Expression
Hypotheses cbvriotavw2.1 x = y A = B
cbvriotavw2.2 x = y φ ψ
Assertion cbvriotavw2 ι x A | φ = ι y B | ψ

Proof

Step Hyp Ref Expression
1 cbvriotavw2.1 x = y A = B
2 cbvriotavw2.2 x = y φ ψ
3 id x = y x = y
4 3 1 eleq12d x = y x A y B
5 4 2 anbi12d x = y x A φ y B ψ
6 5 cbviotavw ι x | x A φ = ι y | y B ψ
7 df-riota ι x A | φ = ι x | x A φ
8 df-riota ι y B | ψ = ι y | y B ψ
9 6 7 8 3eqtr4i ι x A | φ = ι y B | ψ