Metamath Proof Explorer


Theorem cbvrmovw2

Description: Change bound variable and domain in the restricted at-most-one quantifier, using implicit substitution. (Contributed by GG, 14-Aug-2025)

Ref Expression
Hypotheses cbvrmovw2.1 x = y A = B
cbvrmovw2.2 x = y φ ψ
Assertion cbvrmovw2 * x A φ * y B ψ

Proof

Step Hyp Ref Expression
1 cbvrmovw2.1 x = y A = B
2 cbvrmovw2.2 x = y φ ψ
3 eleq1w x = y x A y A
4 1 eleq2d x = y y A y B
5 3 4 bitrd x = y x A y B
6 5 2 anbi12d x = y x A φ y B ψ
7 6 cbvmovw * x x A φ * y y B ψ
8 df-rmo * x A φ * x x A φ
9 df-rmo * y B ψ * y y B ψ
10 7 8 9 3bitr4i * x A φ * y B ψ