Metamath Proof Explorer


Theorem cbvsbcdavw

Description: Change bound variable of a class substitution. Deduction form. (Contributed by GG, 14-Aug-2025)

Ref Expression
Hypothesis cbvsbcdavw.1 φ x = y ψ χ
Assertion cbvsbcdavw φ [˙A / x]˙ ψ [˙A / y]˙ χ

Proof

Step Hyp Ref Expression
1 cbvsbcdavw.1 φ x = y ψ χ
2 1 cbvabdavw φ x | ψ = y | χ
3 2 eleq2d φ A x | ψ A y | χ
4 df-sbc [˙A / x]˙ ψ A x | ψ
5 df-sbc [˙A / y]˙ χ A y | χ
6 3 4 5 3bitr4g φ [˙A / x]˙ ψ [˙A / y]˙ χ