Metamath Proof Explorer


Theorem cbvsbvf

Description: Change the bound variable (i.e. the substituted one) in wff's linked by implicit substitution. The proof was part of a former cbvabw version. (Contributed by GG and WL, 26-Oct-2024)

Ref Expression
Hypotheses cbvsbvf.1 yφ
cbvsbvf.2 xψ
cbvsbvf.3 x=yφψ
Assertion cbvsbvf zxφzyψ

Proof

Step Hyp Ref Expression
1 cbvsbvf.1 yφ
2 cbvsbvf.2 xψ
3 cbvsbvf.3 x=yφψ
4 nfv yx=w
5 4 1 nfim yx=wφ
6 nfv xy=w
7 6 2 nfim xy=wψ
8 equequ1 x=yx=wy=w
9 8 3 imbi12d x=yx=wφy=wψ
10 5 7 9 cbvalv1 xx=wφyy=wψ
11 10 imbi2i w=zxx=wφw=zyy=wψ
12 11 albii ww=zxx=wφww=zyy=wψ
13 df-sb zxφww=zxx=wφ
14 df-sb zyψww=zyy=wψ
15 12 13 14 3bitr4i zxφzyψ