Metamath Proof Explorer


Theorem cbvsumvw2

Description: Change bound variable and the set of integers in a sum, using implicit substitution. (Contributed by GG, 1-Sep-2025)

Ref Expression
Hypotheses cbvsumvw2.1 A = B
cbvsumvw2.2 j = k C = D
Assertion cbvsumvw2 j A C = k B D

Proof

Step Hyp Ref Expression
1 cbvsumvw2.1 A = B
2 cbvsumvw2.2 j = k C = D
3 2 cbvsumv j A C = k A D
4 1 sumeq1i k A D = k B D
5 3 4 eqtri j A C = k B D