Metamath Proof Explorer


Theorem ccat2s1p1

Description: Extract the first of two concatenated singleton words. (Contributed by Alexander van der Vekens, 22-Sep-2018) (Revised by JJ, 20-Jan-2024)

Ref Expression
Assertion ccat2s1p1 XV⟨“X”⟩++⟨“Y”⟩0=X

Proof

Step Hyp Ref Expression
1 s1cli ⟨“X”⟩WordV
2 s1cli ⟨“Y”⟩WordV
3 s1len ⟨“X”⟩=1
4 1nn 1
5 3 4 eqeltri ⟨“X”⟩
6 lbfzo0 00..^⟨“X”⟩⟨“X”⟩
7 5 6 mpbir 00..^⟨“X”⟩
8 ccatval1 ⟨“X”⟩WordV⟨“Y”⟩WordV00..^⟨“X”⟩⟨“X”⟩++⟨“Y”⟩0=⟨“X”⟩0
9 1 2 7 8 mp3an ⟨“X”⟩++⟨“Y”⟩0=⟨“X”⟩0
10 s1fv XV⟨“X”⟩0=X
11 9 10 eqtrid XV⟨“X”⟩++⟨“Y”⟩0=X