Metamath Proof Explorer


Theorem cchhllem

Description: Lemma for chlbas and chlvsca . (Contributed by Thierry Arnoux, 15-Apr-2019) (Revised by AV, 29-Oct-2024)

Ref Expression
Hypotheses cchhl.c C = subringAlg fld sSet 𝑖 ndx x , y x y
cchhllem.1 E = Slot E ndx
cchhllem.2 Scalar ndx E ndx
cchhllem.3 ndx E ndx
cchhllem.4 𝑖 ndx E ndx
Assertion cchhllem E fld = E C

Proof

Step Hyp Ref Expression
1 cchhl.c C = subringAlg fld sSet 𝑖 ndx x , y x y
2 cchhllem.1 E = Slot E ndx
3 cchhllem.2 Scalar ndx E ndx
4 cchhllem.3 ndx E ndx
5 cchhllem.4 𝑖 ndx E ndx
6 5 necomi E ndx 𝑖 ndx
7 2 6 setsnid E subringAlg fld = E subringAlg fld sSet 𝑖 ndx x , y x y
8 eqidd subringAlg fld = subringAlg fld
9 ax-resscn
10 cnfldbas = Base fld
11 9 10 sseqtri Base fld
12 11 a1i Base fld
13 8 12 2 3 4 5 sralem E fld = E subringAlg fld
14 13 mptru E fld = E subringAlg fld
15 1 fveq2i E C = E subringAlg fld sSet 𝑖 ndx x , y x y
16 7 14 15 3eqtr4i E fld = E C