Step |
Hyp |
Ref |
Expression |
1 |
|
cchhl.c |
|- C = ( ( ( subringAlg ` CCfld ) ` RR ) sSet <. ( .i ` ndx ) , ( x e. CC , y e. CC |-> ( x x. ( * ` y ) ) ) >. ) |
2 |
|
cchhllem.1 |
|- E = Slot ( E ` ndx ) |
3 |
|
cchhllem.2 |
|- ( Scalar ` ndx ) =/= ( E ` ndx ) |
4 |
|
cchhllem.3 |
|- ( .s ` ndx ) =/= ( E ` ndx ) |
5 |
|
cchhllem.4 |
|- ( .i ` ndx ) =/= ( E ` ndx ) |
6 |
5
|
necomi |
|- ( E ` ndx ) =/= ( .i ` ndx ) |
7 |
2 6
|
setsnid |
|- ( E ` ( ( subringAlg ` CCfld ) ` RR ) ) = ( E ` ( ( ( subringAlg ` CCfld ) ` RR ) sSet <. ( .i ` ndx ) , ( x e. CC , y e. CC |-> ( x x. ( * ` y ) ) ) >. ) ) |
8 |
|
eqidd |
|- ( T. -> ( ( subringAlg ` CCfld ) ` RR ) = ( ( subringAlg ` CCfld ) ` RR ) ) |
9 |
|
ax-resscn |
|- RR C_ CC |
10 |
|
cnfldbas |
|- CC = ( Base ` CCfld ) |
11 |
9 10
|
sseqtri |
|- RR C_ ( Base ` CCfld ) |
12 |
11
|
a1i |
|- ( T. -> RR C_ ( Base ` CCfld ) ) |
13 |
8 12 2 3 4 5
|
sralem |
|- ( T. -> ( E ` CCfld ) = ( E ` ( ( subringAlg ` CCfld ) ` RR ) ) ) |
14 |
13
|
mptru |
|- ( E ` CCfld ) = ( E ` ( ( subringAlg ` CCfld ) ` RR ) ) |
15 |
1
|
fveq2i |
|- ( E ` C ) = ( E ` ( ( ( subringAlg ` CCfld ) ` RR ) sSet <. ( .i ` ndx ) , ( x e. CC , y e. CC |-> ( x x. ( * ` y ) ) ) >. ) ) |
16 |
7 14 15
|
3eqtr4i |
|- ( E ` CCfld ) = ( E ` C ) |