| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cchhl.c |  |-  C = ( ( ( subringAlg ` CCfld ) ` RR ) sSet <. ( .i ` ndx ) , ( x e. CC , y e. CC |-> ( x x. ( * ` y ) ) ) >. ) | 
						
							| 2 |  | cchhllem.1 |  |-  E = Slot ( E ` ndx ) | 
						
							| 3 |  | cchhllem.2 |  |-  ( Scalar ` ndx ) =/= ( E ` ndx ) | 
						
							| 4 |  | cchhllem.3 |  |-  ( .s ` ndx ) =/= ( E ` ndx ) | 
						
							| 5 |  | cchhllem.4 |  |-  ( .i ` ndx ) =/= ( E ` ndx ) | 
						
							| 6 | 5 | necomi |  |-  ( E ` ndx ) =/= ( .i ` ndx ) | 
						
							| 7 | 2 6 | setsnid |  |-  ( E ` ( ( subringAlg ` CCfld ) ` RR ) ) = ( E ` ( ( ( subringAlg ` CCfld ) ` RR ) sSet <. ( .i ` ndx ) , ( x e. CC , y e. CC |-> ( x x. ( * ` y ) ) ) >. ) ) | 
						
							| 8 |  | eqidd |  |-  ( T. -> ( ( subringAlg ` CCfld ) ` RR ) = ( ( subringAlg ` CCfld ) ` RR ) ) | 
						
							| 9 |  | ax-resscn |  |-  RR C_ CC | 
						
							| 10 |  | cnfldbas |  |-  CC = ( Base ` CCfld ) | 
						
							| 11 | 9 10 | sseqtri |  |-  RR C_ ( Base ` CCfld ) | 
						
							| 12 | 11 | a1i |  |-  ( T. -> RR C_ ( Base ` CCfld ) ) | 
						
							| 13 | 8 12 2 3 4 5 | sralem |  |-  ( T. -> ( E ` CCfld ) = ( E ` ( ( subringAlg ` CCfld ) ` RR ) ) ) | 
						
							| 14 | 13 | mptru |  |-  ( E ` CCfld ) = ( E ` ( ( subringAlg ` CCfld ) ` RR ) ) | 
						
							| 15 | 1 | fveq2i |  |-  ( E ` C ) = ( E ` ( ( ( subringAlg ` CCfld ) ` RR ) sSet <. ( .i ` ndx ) , ( x e. CC , y e. CC |-> ( x x. ( * ` y ) ) ) >. ) ) | 
						
							| 16 | 7 14 15 | 3eqtr4i |  |-  ( E ` CCfld ) = ( E ` C ) |